Your Brain: Individual & Unique

Summary: Individual variations define a specific structural fingerprint with a direct impact on the functional organization of individual brains. The findings stress the importance of using individual models to understand brain function.

Source: Technion-Israel Institute of Technology

New research conducted by Professor Itamar Kahn, director of the Brain Systems Organization in Health and Disease Lab in the Technion’s Rappaport Faculty of Medicine, in collaboration with scientists from France and the U.S., demonstrates the importance of personalized brain models. The research team’s findings show that individual variations in the brain’s structural connectome (map of neural connections) define a specific structural fingerprint with a direct impact on the functional organization of individual brains.

The groundbreaking research, “Individual structural features constrain the mouse functional connectome,” was published in PNAS, the official journal of the National Academy of Sciences of the United States. Technion MD/Ph.D. candidate Eyal Bergmann and Université d’Aix-Marseille doctoral student Francesca Melozzi were lead co-authors.

By using a connectome-based model approach, Prof. Kahn and his partners aimed to understand the functional organization of the brain by modeling the brain as a dynamic system, then studying how the functional architecture rises from the underlying structural skeleton. Taking advantage of mice studies, they systematically investigated the informative content of different structural features in explaining the emergence of the functional ones.

Whole brain dynamics intuitively depend upon the internal wiring of the brain; but to which extent the individual structural connectome constrains the corresponding functional connectome is unknown, even though its importance is uncontested. After acquiring structural MRI data from individual mice, the researchers virtualized their brain networks and simulated in silico functional MRI data. Theoretical results were validated against empirical awake functional MRI data obtained from the same mice. As a result, the researchers were able to demonstrate that individual structural connectomes predict the functional organization of individual brains.

This shows a woman surrounded by thought bubbles
Whole brain dynamics intuitively depend upon the internal wiring of the brain; but to which extent the individual structural connectome constrains the corresponding functional connectome is unknown, even though its importance is uncontested. Image is in the public domain.

While structural MRI is a common non-invasive method that can estimate structural connectivity in individual humans and rodents, it is not as precise as the gold standard connectivity mapping possible in the mouse. Utilizing precise mapping available in mice, the authors identified which missing connections (not measurable with structural MRI) are important for whole brain dynamics in the mouse. The researchers identified that individual variations thus define a specific structural fingerprint with a direct impact upon the functional organization of individual brains, a key feature for personalized medicine.

About this neuroscience research article

Source:
Technion-Israel Institute of Technology
Media Contacts:
Itamar Kahn – Technion-Israel Institute of Technology
Image Source:
The image is in the public domain.

Original Research: Open access
“Individual structural features constrain the mouse functional connectome”. Francesca Melozzi, Eyal Bergmann, Julie A. Harris, Itamar Kahn, Viktor Jirsa, and Christophe Bernard.
PNAS doi:10.1073/pnas.1906694116.

Abstract

Individual structural features constrain the mouse functional connectome

Whole brain dynamics intuitively depend upon the internal wiring of the brain; but to which extent the individual structural connectome constrains the corresponding functional connectome is unknown, even though its importance is uncontested. After acquiring structural data from individual mice, we virtualized their brain networks and simulated in silico functional MRI data. Theoretical results were validated against empirical awake functional MRI data obtained from the same mice. We demonstrate that individual structural connectomes predict the functional organization of individual brains. Using a virtual mouse brain derived from the Allen Mouse Brain Connectivity Atlas, we further show that the dominant predictors of individual structure–function relations are the asymmetry and the weights of the structural links. Model predictions were validated experimentally using tracer injections, identifying which missing connections (not measurable with diffusion MRI) are important for whole brain dynamics in the mouse. Individual variations thus define a specific structural fingerprint with direct impact upon the functional organization of individual brains, a key feature for personalized medicine.

Feel free to share this Neuroscience News.
Join our Newsletter
I agree to have my personal information transferred to AWeber for Neuroscience Newsletter ( more information )
Sign up to receive our recent neuroscience headlines and summaries sent to your email once a day, totally free.
We hate spam and only use your email to contact you about newsletters. You can cancel your subscription any time.