More Than a Feeling: The Anatomy of Pain

Emotions consist of general components that are also elicited by similar impressions and specific components.

Grimacing, we flinch when we see someone accidentally hit their thumb with a hammer. But is it really pain we feel? Researchers at the Max Planck Institute for Human Cognitive and Brain Sciences in Leipzig and other institutions have now proposed a new theory that describes pain as a multi-layered gradual event which consists of specific pain components, such as a burning sensation in the hand, and more general components, such as negative emotions. A comparison of the brain activation patterns during both experiences could clarify which components the empathic response shares with real pain.

Imagine you’re driving a nail into a wall with a hammer and accidentally bang your finger. You would probably injure finger tissue, feel physical distress, focus all your attention on your injured finger and take care not to repeat the misfortune. All this describes physical and psychological manifestations of “pain” – specifically, so-called nociceptive pain experienced by your body, which is caused by the stimulation of pain receptors.

Now imagine that you see a friend injure him or herself in the same way. You would again literally wince and feel pain, empathetic pain in this case. Although you yourself have not sustained any injury, to some extent you would experience the same symptoms: You would feel anxiety; you may recoil to put distance between yourself and the source of the pain; and you would store information about the context of the experience in order to avoid pain in the future.

Activity in the brain

Previous studies have shown that the same brain structures – namely the anterior insula and the cingulate cortex – are activated, irrespective of whether the pain is personally experienced or empathetic. However, despite this congruence in the underlying activated areas of the brain, the extent to which the two forms of pain really are similar remains a matter of considerable controversy.

To help shed light on the matter, neuroscientists, including Tania Singer, Director at the Max Planck Institute for Human Cognitive and Brain Sciences in Leipzig, have now proposed a new theory: “We need to get away from this either-or question, whether the pain is genuine or not.”

Instead, it should be seen as a complex interaction of multiple elements, which together form the complex experience we call “pain”. The elements include sensory processes, which determine, for example, where the pain stimulus was triggered: in the hand or in the foot? In addition, emotional processes, such as the negative feeling experienced during pain, also come into play. “The decisive point is that the individual processes can also play a role in other experiences, albeit in a different activation pattern,” Singer explains – for example, if someone tickles your hand or foot, or you see images of people suffering on television. Other processes, such as the stimulation of pain receptors, are probably highly specific to pain. The neuroscientists therefore propose comparing the elements of direct and empathetic pain: Which elements are shared and which, by contrast, are specific and unique to the each form of pain?

Areas process general components

A study that was published almost simultaneously by scientists from the Max Planck Institute for Human Cognitive and Brain Sciences and the University of Geneva has provided strong proof of this theory: They were able to demonstrate for the first time that during painful experiences the anterior insula region and the cingulate cortex process both general components, which also occur during other negative experiences such as disgust or indignation, and specific pain information – whether the pain is direct or empathic.

Image shows someone about to cut their finger with a knife while slicing an orange.
If this picture makes you feel uncomfortable, you feel empathic pain. This sensation acitvates the same brain regions as real pain. Credit: Kai Weinsziehr for MPG.

The general components signal that an experience is in fact unpleasant and not joyful. The specific information, in turn, tells us that pain – not disgust or indignation – is involved, and whether the pain is being experienced by you or someone else. “Both the nonspecific and the specific information are processed in parallel in the brain structures responsible for pain. But the activation patterns are different,” says Anita Tusche, also a neuroscientist at the Max Planck Institute in Leipzig and one of the authors of the study.

Thanks to the fact that our brain deals with these components in parallel, we can process various unpleasant experiences in a time-saving and energy-saving manner. At the same time, however, we are able register detailed information quickly, so that we know exactly what kind of unpleasant event has occurred – and whether it affects us directly or vicariously. “The fact that our brain processes pain and other unpleasant events simultaneously for the most part, no matter if they are experienced by us or someone else, is very important for social interactions,” Tusche says, “because it helps to us understand what others are experiencing.”

About this pain and neuroscience research

Source: Dr. Tania Singer – Max Planck Institute
Image Source: The image is credited to Kai Weinsziehr for MPG.
Original Research: Abstract for “The Anatomy of Suffering: Understanding the Relationship between Nociceptive and Empathic Pain” by Zaki J, Wager TD, Singer T, Keysers C, and Gazzola V in Trends in Cognitive Sciences. Published online March 1 2016 doi:10.1016/j.tics.2016.02.003


Abstract

The Anatomy of Suffering: Understanding the Relationship between Nociceptive and Empathic Pain

Pain features centrally in numerous illnesses and generates enormous public health costs. Despite its ubiquity, the psychological and neurophysiological nature of pain remains controversial. Here, we survey one controversy in particular: the relation between nociceptive pain, which is somatic in origin, and empathic pain, which arises from observing others in pain. First, we review evidence for neural overlap between nociceptive and empathic pain and what this overlap implies about underlying mental representations. Then, we propose a framework for understanding the nature of the psychological and neurophysiological correspondence across these types of ‘pain’. This framework suggests new directions for research that can better identify shared and dissociable representations underlying different types of distress, and can inform theories about the nature of pain.

Trends

Neuroimaging evidence has suggested both overlapping and nonoverlapping representations across nociceptive and empathic pain, leading to debates as to whether empathic experience should be considered a type of pain or a distinct experience.

Here, we advocate dispensing with binary definitions of pain versus nonpain, and instead considering the constellation of phenomena that comprise pain.

This approach, in conjunction with cumulative efforts testing the specificity and generalizability of brain measures across labs, can help us move beyond debates about which experiences are or are not pain, and towards a more comprehensive understanding of aversive experiences and their constituent representations.

“The Anatomy of Suffering: Understanding the Relationship between Nociceptive and Empathic Pain” by Zaki J, Wager TD, Singer T, Keysers C, and Gazzola V in Trends in Cognitive Sciences. Published online March 1 2016 doi:10.1016/j.tics.2016.02.003

Feel free to share this Neuroscience News.
Join our Newsletter
I agree to have my personal information transferred to AWeber for Neuroscience Newsletter ( more information )
Sign up to receive our recent neuroscience headlines and summaries sent to your email once a day, totally free.
We hate spam and only use your email to contact you about newsletters. You can cancel your subscription any time.
  1. I remember that, when I was in my early teens, I saw (on TV?) a woman trying to break through the EMTs who were treating her injured child, thus endangering the welfare of her child. I guess you could say an uncontrolled excess of empathetic pain drove her irrational action. All I saw was how stupid she was by endangering her child. I decided I would never panic in an emergency–and I haven’t yet. The fact that I have a bit of autism may have contributed to my ability to make and keep that promise. The result is that I am the one people come to in a crisis.

    As the years went on, it was my habit to do a lot of internal observation. I remember reading that people with a prefrontal lobotomy experienced pain but did not care about it. I concluded that somatic pain consists of two components: physical and emotional, and that each drives the other. Evidently, the emotional component is dealt with by the pathways severed by the PFC. I learned how to adjust something (?) internally to suppress greatly the emotional component of pain. I also found that redirecting my attention to any other subject, the pain could be greatly suppressed, even extinguished. (I went through shingles with no pain medication; did not need it.) However, I also observed that there is an energy cost to such suppression. This phenomenon appears to be similar to the mechanism used by professional athletes, first responders, and military in dealing with injuries incurred in the line of duty. It should be noted that I could not call on this phenomenon to counter visceral pain. It must be a completely different set of pathways.

    I have noticed that the more people express the emotional component, the greater the perceived pain, whether somatic or empathetic. Some do this to the extent of being labeled “drama queens” (I just don’t happen to know the masculine equivalent, but they exist). I am sure pain management programs employ techniques that employ what I have mentioned, but I just think it might help if they let people know about the circuitry involved.

Comments are closed.