Study explains why some creams and cosmetics may cause a skin rash

Summary: Study reveals how some chemicals in popular cosmetics and skin lotions displace lipids in skin cells, triggering allergic contact dermatitis.

Source: Columbia University

Allergic reactions in the skin can be caused by many different chemical compounds found in creams, cosmetics, and other topical consumer products, but how they trigger the reaction has remained somewhat mysterious.

A new study suggests the way some chemicals displace natural fat-like molecules (called lipids) in skin cells may explain how many common ingredients trigger allergic contact dermatitis, and encouragingly, suggests a new way to treat the condition.

The study was led by researchers at Columbia University Irving Medical Center, the Brigham and Women’s Hospital, and Monash University and published online today in Science Immunology.

Why some chemicals trigger dermatitis is a mystery

Poison ivy is a commonly known trigger for allergic contact dermatitis, an itchy skin rash. But many ingredients found in nonprescription topical products can trigger a similar type of rash.

An allergic reaction begins when the immune system’s T cells recognize a chemical as foreign. T cells do not directly recognize small chemicals, and research suggests that these compounds need to undergo a chemical reaction with larger proteins in order to make themselves visible to T cells.

“However, many small compounds in skincare products that trigger allergic contact dermatitis lack the chemical groups needed for this reaction to occur,” says study co-leader Annemieke de Jong, PhD, assistant professor of dermatology at Columbia University Vagelos College of Physicians and Surgeons.

“These small chemicals should be invisible to T cells, but they’re not.”

Skin cells unmask allergy-inducing chemicals

De Jong and her colleagues suspected that CD1a, a molecule that’s abundant on Langerhans cells (immune cells in the skin’s outer layer), might be responsible for making these chemicals visible to T cells.

In the current study, conducted with human cells in tissue culture, the researchers found that several common chemicals known to trigger allergic contact dermatitis were able to bind to CD1a molecules on the surface of Langerhans cells and activate T cells.

These chemicals included Balsam of Peru and farnesol, which are found in many personal care products, such as skin creams, toothpaste, and fragrances. Within Balsam of Peru, the researchers identified benzyl benzoate and benzyl cinnamate as the chemicals responsible for the reaction, and overall they identified more than a dozen small chemicals that activated T cells through CD1a.

“Our work shows how these chemicals can activate T cells in tissue culture, but we have to be cautious about claiming that this is definitively how it works in allergic patients,” de Jong says. “The study does pave the way for follow up studies to confirm the mechanism in allergic patients and design inhibitors of the response.”

New Ideas for Treatment

CD1a molecules normally bind the skin’s own naturally occurring lipids in its tunnel-like interior. These lipids protrude from the tunnel, creating a physical barrier that prevents CD1a from interacting with T cells.

Structural work done at Monash University showed that farnesol, one of the allergens identified in this study, can hide inside the tunnel of CD1a, displacing the natural lipids that normally protrude from the CD1a molecule. “This displacement makes the CD1a surface visible to the T cells, causing an immune reaction,” de Jong says.

A new study suggests the way some chemicals displace natural fat-like molecules (called lipids) in skin cells may explain how many common ingredients trigger allergic contact dermatitis and, encouragingly, suggests a new way to treat the condition. Image is in the public domain.

This discovery raises the possibility that allergic contact dermatitis could be stopped by applying competing lipids to the skin to displace those triggering the immune reaction. “From previous studies, we know the identity of several lipids that can bind to CD1a but won’t activate T cells,” she says.

Currently, the only way to stop allergic contact dermatitis is to identify and avoid contact with the offending chemical. Topical ointments can help sooth the rashes, which usually clear up in less than a month. In severe cases, physicians may prescribe oral corticosteroids, anti-inflammatory agents that suppress the immune system, increasing the risk of infections and other side effects.

The other study co-leaders are Jamie Rossjohn of Monash University (Melbourne, Australia) and Cardiff University School of Medicine (Cardiff, Wales, United Kingdom) and D. Branch Moody of Brigham and Women’s Hospital, Harvard Medical School (Boston, MA).

The study is titled “Human T cell response to CD1a and contact dermatitis allergens in botanical extracts and commercial skin care products.” The other contributors are Sarah Nicolai (Brigham and Women’s Hospital, Harvard Medical School, Boston, MA), Marcin Wegrecki (Monash University, Clayton, Victoria, Australia), Tan-Yun Cheng (Brigham and Women’s Hospital), Elvire A. Bourgeois (Brigham and Women’s Hospital), Rachel N. Cotton (Brigham and Women’s Hospital), Jacob A. Mayfield (Brigham and Women’s Hospital), Gwennaëlle C. Monnot (Columbia), Jérôme Le Nours (Monash University), and Ildiko Van Rhijn (Brigham and Women’s Hospital).

Funding: The research was funded by grants from the National Institutes of Health (T32 AI007306, K01 AR068475, R01 AR048632), the National Health and Medical Research Council of Australia, and the Australian Research Council, an Irving Scholarship from the Irving Institute for Clinical and Translational Research at Columbia University, and a Wellcome Trust Collaborative Award.

The authors declare that they have no competing interests.

About this neuroscience research article

Source:
Columbia University
Media Contacts:
Annemieke de Jong – Columbia University
Image Source:
The image is in the public domain.

Original Research: Open access
“Human T cell response to CD1a and contact dermatitis allergens in botanical extracts and commercial skin care products”. Sarah Nicolai, Marcin Wegrecki, Tan-Yun Cheng, Elvire A. Bourgeois, Rachel N. Cotton, Jacob A. Mayfield, Gwennaëlle C. Monnot, Jérôme Le Nours, Ildiko Van Rhijn, Jamie Rossjohn, D. Branch Moody, Annemieke de Jong..
Science Immunology doi:10.1126/sciimmunol.aax5430.

Abstract

Human T cell response to CD1a and contact dermatitis allergens in botanical extracts and commercial skin care products

During industrialization, humans have been exposed to increasing numbers of foreign chemicals. Failure of the immune system to tolerate drugs, cosmetics, and other skin products causes allergic contact dermatitis, a T cell–mediated disease with rising prevalence. Models of αβ T cell response emphasize T cell receptor (TCR) contact with peptide-MHC complexes, but this model cannot readily explain activation by most contact dermatitis allergens, which are nonpeptidic molecules. We tested whether CD1a, an abundant MHC I–like protein in human skin, mediates contact allergen recognition. Using CD1a-autoreactive human αβ T cell clones to screen clinically important allergens present in skin patch testing kits, we identified responses to balsam of Peru, a tree oil widely used in cosmetics and toothpaste. Additional purification identified benzyl benzoate and benzyl cinnamate as antigenic compounds within balsam of Peru. Screening of structurally related compounds revealed additional stimulants of CD1a-restricted T cells, including farnesol and coenzyme Q2. Certain general chemical features controlled response: small size, extreme hydrophobicity, and chemical constraint from rings and unsaturations. Unlike lipid antigens that protrude to form epitopes and contact TCRs, the small size of farnesol allows sequestration deeply within CD1a, where it displaces self-lipids and unmasks the CD1a surface. These studies identify molecular connections between CD1a and hypersensitivity to consumer products, defining a mechanism that could plausibly explain the many known T cell responses to oily substances.

Feel free to share this Neuroscience News.
Join our Newsletter
Thank you for subscribing.
Something went wrong.
I agree to have my personal information transferred to AWeber for Neuroscience Newsletter ( more information )
Sign up to receive our recent neuroscience headlines and summaries sent to your email once a day, totally free.
We hate spam and only use your email to contact you about newsletters. You can cancel your subscription any time.
Exit mobile version