The Neural Basis of Multitasking

What makes someone better at switching between different tasks? Looking for the mechanisms behind cognitive flexibility, researchers at the University of Pennsylvania and Germany’s Central Institute of Mental Health in Mannheim and Charité University Medicine Berlin have used brain scans to shed new light on this question.

By studying networks of activity in the brain’s frontal cortex, a region associated with control over thoughts and actions, the researchers have shown that the degree to which these networks reconfigure themselves while switching from task to task predicts people’s cognitive flexibility.

Experiment participants who performed best while alternating between a memory test and a control test showed the most rearrangement of connections within their frontal cortices as well as the most new connections with other areas of their brains.

A more fundamental understanding of how the brain manages multitasking could lead to better interventions for medical conditions associated with reduced executive function, such as autism, schizophrenia or dementia.

Image shows a representation of nodes in the brain.
These plots show connection strength between nodes in the brain during the control task (top) and the memory task (bottom). Brain regions are arrayed on both the X and Y axes; the strength of their connection is indicated by the color of the coordinate where they meet. Credit: The researchers/PNAS.

Danielle Bassett, the Skirkanich Assistant Professor of Innovation in Penn’s School of Engineering and Applied Science, is senior author on the study. Manheim’s Urs Braun and Axel Schäfer were the lead authors. The research also featured work from Andreas Meyer-Lindenberg and Heike Tost of Mannheim, Henrik Walter of Charité, and others.

It was published in the Proceedings of the National Academy of Sciences.

Rather than looking at the role a single region in the brain plays, Bassett and colleagues study the interconnections between the regions as indicated by synchronized activity. Using fMRI, they can measure which parts of the brain are “talking” to one another as study participants perform various tasks. Mapping the way this activity network reconfigures itself provides a more holistic view of how the brain operates.

“We try to understand how dynamic flexibility of brain networks can predict cognitive flexibility, or the ability to switch from task to task,” Bassett said. “Rather than being driven by the activity of single brain areas, we believe executive function is a network-level process.”

A previous study that Bassett led showed that people who could more quickly “disconnect” their frontal cortices did better on a task that involved pressing keys that corresponded to color-coded notes on a screen. The high level decision-making associated with the frontal cortex’s cognitive control wasn’t as critical to playing the short sequences of notes, so those who still engaged this part of the brain were essentially overthinking a simple problem.

In the new experiment, lead by Andreas Meyer-Lindenberg of Mannheim, 344 participants alternated between a working memory task designed to engage the frontal cortex and a control task. The easy task involved pressing the corresponding button as a sequence of numbers appeared on a screen one by one. The hard task also involved a sequence of numbers on a screen, but participants had to press the button that corresponded to the number that appeared two places back in the series each time they saw a new one.

Urs Braun and Axel Schäfer, the lead authors on the paper, collaborated with Bassett, who has developed novel tools from network science to distill evolving brain connections. They used these tools to map how participants’ brain activities rearranged during each block of the working memory task, each block of the control task and blocks in between where participants switched gears.

“The nodes in the network that are most involved in reconfigurations are cognitive control areas in the frontal cortex,” Bassett said. “More flexibility within the frontal cortex meant more accuracy on the memory task, and more consistent connectivity between the frontal cortex and other regions was even more predictive.”

While the predictive strength of this reconfiguration suggests that it is only one of several processes involved in successful task switching, it plays a core role.

“It doesn’t account for a huge amount variance,” Bassett said, “but it suggests that this kind of reconfiguration is a fundamental aspect of cognitive flexibility.”

About this neuroscience research

Other researchers who contributed to the study include Susanne Erk, Nina Romanczuk-Seiferth and Andreas Heinz of Berlin, and Leila Haddad, Janina I. Schweiger and Oliver Grimm of Mannheim.

Funding: The research was supported by the John D. and Catherine T. MacArthur Foundation; Alfred P. Sloan Foundation; Army Research Laboratory through contract W911NF-10-2-0022; Institute for Translational Medicine and Therapeutics at Penn; National Institute of Mental Health through award 2-R01-DC-009209-11; National Science Foundation through awards BCS-1441502 and BCS-1430087; German Federal Ministry of Education and Research through grants 01GS08144, 01GS08147 and 01GS08148; Innovative Medicines Initiative Joint Undertaking though grant agreement 115008; and German Federal Ministry of Education and Research through BMBF 01GQ1102.

Source: Evan Lerner – University of Pennsylvania
Image Source: The image is credited to the researchers/PNAS
Original Research: Full open access research for “Dynamic reconfiguration of frontal brain networks during executive cognition in humans” by Urs Braun, Axel Schäfer, Henrik Walter, Susanne Erk, Nina Romanczuk-Seiferth, Leila Haddad, Janina I. Schweiger, Oliver Grimm, Andreas Heinz, Heike Tost, Andreas Meyer-Lindenberg, and Danielle S. Bassett in PNAS. Published online August 31 2015 doi:10.1073/pnas.1422487112


Dynamic reconfiguration of frontal brain networks during executive cognition in humans

The brain is an inherently dynamic system, and executive cognition requires dynamically reconfiguring, highly evolving networks of brain regions that interact in complex and transient communication patterns. However, a precise characterization of these reconfiguration processes during cognitive function in humans remains elusive. Here, we use a series of techniques developed in the field of “dynamic network neuroscience” to investigate the dynamics of functional brain networks in 344 healthy subjects during a working-memory challenge (the “n-back” task). In contrast to a control condition, in which dynamic changes in cortical networks were spread evenly across systems, the effortful working-memory condition was characterized by a reconfiguration of frontoparietal and frontotemporal networks. This reconfiguration, which characterizes “network flexibility,” employs transient and heterogeneous connectivity between frontal systems, which we refer to as “integration.” Frontal integration predicted neuropsychological measures requiring working memory and executive cognition, suggesting that dynamic network reconfiguration between frontal systems supports those functions. Our results characterize dynamic reconfiguration of large-scale distributed neural circuits during executive cognition in humans and have implications for understanding impaired cognitive function in disorders affecting connectivity, such as schizophrenia or dementia.

“Dynamic reconfiguration of frontal brain networks during executive cognition in humans” by Urs Braun, Axel Schäfer, Henrik Walter, Susanne Erk, Nina Romanczuk-Seiferth, Leila Haddad, Janina I. Schweiger, Oliver Grimm, Andreas Heinz, Heike Tost, Andreas Meyer-Lindenberg, and Danielle S. Bassett in PNAS. Published online August 31 2015 doi:10.1073/pnas.1422487112

Feel free to share this neuroscience article.
Join our Newsletter
I agree to have my personal information transferred to AWeber for Neuroscience Newsletter ( more information )
Sign up to receive our recent neuroscience headlines and summaries sent to your email once a day, totally free.
We hate spam and only use your email to contact you about newsletters. You can cancel your subscription any time.