Decision-making process becomes visible in the brain

Summary: Study tracks how and where zebrafish brains transform the movement of the environment into a decision that causes the fish to swim in a specific direction.

Source: Max Planck Institute

Without hardly noticing, we make countless decisions: to turn left or right on the bus? To wait or to accelerate? To look or to ignore? In the run-up to these decisions the brain evaluates sensory information and only then does it generate a behavior. For the first time, scientists at the Max Planck Institute of Neurobiology were able to follow such a decision-making process throughout an entire vertebrate brain. Their new approach shows how and where the zebrafish brain transforms the movement of the environment into a decision that causes the fish to swim in a specific direction.

Young zebrafish are tiny. Their brain is not much bigger than that of a fly and almost transparent. “We can therefore look into the entire brain and see what happens, for example, when a decision is made,” explains Elena Dragomir, who has done exactly this. “The first step was to find a behavioral paradigm that we could use to study decision making,” says Elena Dragomir. Other animal species, for example, are shown dots that move more or less in one direction. The animals can be trained to indicate their decision on the direction of the dots’ movement, and if it is correct, they receive a reward. The neurobiologists from Ruben Portugues’ group have now adapted this experimental setup for zebrafish. “The trick is that we use a reliable behavior called the optomotor response as a readout of the fish’s decision”.

If a fish drifts in a current, an image of the environment moves past its eyes. Fish will swim in the direction of the perceived optic flow to prevent drifting. Moving dots can trigger this optomotor response in the lab, and fish will turn either to the left or to right, depending on the direction of the moving dots. “We can also vary the difficulty of the decision, by changing the strength of the visual stimulus,” explains Ruben Portugues. “If a higher percentage of dots move in one direction, the fish will turn faster and more reliably to the correct direction.”

Through the microscope, the researchers could observe that the fish brain registers the moving dots and integrates this directional motion in time. After enough evidence has been accumulated, it then triggers a decision to swim in the perceived direction of the moving dots.

Where do the dots move to?

The decision as to when and in which direction the fish will turn correlates with the motion pattern of the dots. “This could take up to several seconds and is definitely not a reflex, which is an immediate response to a sensory stimulus,” explains Vilim Stih, co-author of the study. “This accumulation of sensory information over time is also part of decision making models in other animal species.” In contrast to these species, the researchers are able to map almost all contributing brain regions underlying this decision process in the larval zebrafish.

This is a drawing of a fish swimming
To navigate in a complex environment, the brain needs to integrate relevant sensory information to make behavioral decisions. The image is credited to MPIN / Julia Kuhl.

Neuronal clusters in the pretectum/thalamus region, for example, are likely to process the visual input. The neurons in the hindbrain probably trigger the turning and swimming movements. In the “interpeduncular nucleus” (IPN), the researchers found activity patterns that strongly correlated to the turning rate of the fish. With their integrated behavior, neurophysiology and modeling approach, the Martinsried-based researchers have created completely new possibilities for investigating the flow of information during decision-making in the vertebrate brain.

About this neuroscience research article

Source:
Max Planck Institute
Media Contacts:
Stefanie Merker, Ph.D. – Max Planck Institute
Image Source:
The image is credited to MPIN / Julia Kuhl.

Original Research: Closed access
“Evidence accumulation during a sensorimotor decision task revealed by whole-brain imaging”. Elena I. Dragomir, Vilim Stih, Ruben Portugues.
Nature Neuroscience doi:10.1038/s41593-019-0535-8.

Abstract

Evidence accumulation during a sensorimotor decision task revealed by whole-brain imaging

Although animals can accumulate sensory evidence over considerable time scales to appropriately select behavior, little is known about how the vertebrate brain as a whole accomplishes this. In this study, we developed a new sensorimotor decision-making assay in larval zebrafish based on whole-field visual motion. Fish responded by swimming in the direction of perceived motion, such that the latency to initiate swimming and the fraction of correct turns were modulated by motion strength. Using whole-brain functional imaging, we identified neural activity relevant to different stages of the decision-making process, including the momentary evaluation and accumulation of sensory evidence. This activity is distributed in functional clusters across different brain regions and is characterized by a wide range of time constants. In addition, we found that the caudal interpeduncular nucleus (IPN), a circular structure located ventrally on the midline of the brain, reliably encodes the left and right turning rates.

Feel free to share this Neuroscience News.
Join our Newsletter
I agree to have my personal information transferred to AWeber for Neuroscience Newsletter ( more information )
Sign up to receive our recent neuroscience headlines and summaries sent to your email once a day, totally free.
We hate spam and only use your email to contact you about newsletters. You can cancel your subscription any time.
  1. Sensory systems in the human body do not have to interface with the brain. Example of this you touch a hot surface you pull your hand or finger back without thinking. There is a shortcut in the central nervous system that the sensory nervous system utalizes it’s a shortcut after the hand is pulled back from hot surface it is registered in the brain it saves a fraction of a second by going to the central nervous system and back reacting then registering to brain after the action took place. So if this is sensory systems is it brain registering after the action in the fish.

Comments are closed.