We Might Not Know Half of What’s in Our Cells, New AI Technique Reveals

Summary: New artificial intelligence technology reveals previously unknown cell components. The findings may shed new light on human development and diseases.

Source: UCSD

Most human diseases can be traced to malfunctioning parts of a cell — a tumor is able to grow because a gene wasn’t accurately translated into a particular protein or a metabolic disease arises because mitochondria aren’t firing properly, for example. But to understand what parts of a cell can go wrong in a disease, scientists first need to have a complete list of parts. 

By combining microscopy, biochemistry techniques and artificial intelligence, researchers at University of California San Diego School of Medicine and collaborators have taken what they think may turn out to be a significant leap forward in the understanding of human cells. 

The technique, known as Multi-Scale Integrated Cell (MuSIC), is described November 24, 2021 in Nature.

“If you imagine a cell, you probably picture the colorful diagram in your cell biology textbook, with mitochondria, endoplasmic reticulum and nucleus. But is that the whole story? Definitely not,” said Trey Ideker, PhD, professor at UC San Diego School of Medicine and Moores Cancer Center. “Scientists have long realized there’s more that we don’t know than we know, but now we finally have a way to look deeper.” 

Ideker led the study with Emma Lundberg, PhD, of KTH Royal Institute of Technology in Stockholm, Sweden and Stanford University.

In the pilot study, MuSIC revealed approximately 70 components contained within a human kidney cell line, half of which had never been seen before. In one example, the researchers spotted a group of proteins forming an unfamiliar structure. Working with UC San Diego colleague Gene Yeo, PhD, they eventually determined the structure to be a new complex of proteins that binds RNA. The complex is likely involved in splicing, an important cellular event that enables the translation of genes to proteins, and helps determine which genes are activated at which times. 

The insides of cells — and the many proteins found there — are typically studied using one of two techniques: microscope imaging or biophysical association. With imaging, researchers add florescent tags of various colors to proteins of interest and track their movements and associations across the microscope’s field of view. To look at biophysical associations, researchers might use an antibody specific to a protein to pull it out of the cell and see what else is attached to it. 

The team has been interested in mapping the inner workings of cells for many years. What’s different about MuSIC is the use of deep learning to map the cell directly from cellular microscopy images. 

“The combination of these technologies is unique and powerful because it’s the first time measurements at vastly different scales have been brought together,” said study first author Yue Qin, a Bioinformatics and Systems Biology graduate student in Ideker’s lab.

Microscopes allow scientists to see down to the level of a single micron, about the size of some organelles, such as mitochondria. Smaller elements, such as individual proteins and protein complexes, can’t be seen through a microscope. Biochemistry techniques, which start with a single protein, allow scientists to get down to the nanometer scale. (A nanometer is one-billionth of a meter, or 1,000 microns.)

“But how do you bridge that gap from nanometer to micron scale? That has long been a big hurdle in the biological sciences,” said Ideker, who is also founder of the UC Cancer Cell Map Initiative and the UC San Diego Center for Computational Biology and Bioinformatics. “Turns out you can do it with artificial intelligence — looking at data from multiple sources and asking the system to assemble it into a model of a cell.” 

The team trained the MuSIC artificial intelligence platform to look at all the data and construct a model of the cell. The system doesn’t yet map the cell contents to specific locations, like a textbook diagram, in part because their locations aren’t necessarily fixed. Instead, component locations are fluid and change depending on cell type and situation. 

Ideker noted this was a pilot study to test MuSIC. They’ve only looked at 661 proteins and one cell type. 

This shows a drawing of a cell surrounded by binary code
UC San Diego researchers introduce Multi-Scale Integrated Cell (MuSIC), a technique that combines microscopy, biochemistry and artificial intelligence, revealing previously unknown cell components that may provide new clues to human development and disease. (Artist’s conceptual rendering.) Credit: UC San Diego Health Sciences

“The clear next step is to blow through the entire human cell,” Ideker said, “and then move to different cell types, people and species. Eventually we might be able to better understand the molecular basis of many diseases by comparing what’s different between healthy and diseased cells.”

Co-authors include: Maya L. Gosztyla, Marcus R. Kelly, Steven M. Blue, Fan Zheng, Michael Chen, Leah V. Schaffer, Katherine Licon, John J. Lee, Sophie N. Liu, Erica Silva, Jisoo Park, Adriana Pitea, Jason F. Kreisberg, UC San Diego; Edward L. Huttlin, Laura Pontano Vaites, Tian Zhang, Steven P. Gygi, J. Wade Harper, Harvard Medical School; Casper F. Winsnes, Anna Bäckström, Wei Ouyang, KTH Royal Institute of Technology; Ludivine Wacheul, Denis L. J. Lafontaine, Université Libre de Bruxelles; and Jianzhu Ma, Peking University.

Disclosures: Trey Ideker is co-founder of, on the Scientific Advisory Board and has an equity interest in Data4Cure, Inc. Ideker is also on the Scientific Advisory Board, has an equity interest in and receives sponsored research funding from Ideaya BioSciences, Inc.

Gene Yeo is a co-founder, member of the Board of Directors, on the Scientific Advisory Board, an equity holder and a paid consultant for Locanabio and Eclipse BioInnovations. Yeo is also a visiting professor at the National University of Singapore.

The terms of these arrangements have been reviewed and approved by the University of California San Diego in accordance with its conflict-of-interest policies. Emma Lundberg is on the Scientific Advisory Boards of and has equity interests in Cartography Biosciences, Nautilus Biotechnology and Interline Therapeutics.

J. Wade Harper is a co-founder of, on the Scientific Advisory Board and has an equity interest in Caraway Therapeutics. Harper is also Founding Scientific Advisor for Interline Therapeutics.

About this AI research news

Author: Heather Buschman
Source: UCSD
Contact: Heather Buschman – UCSD
Image: The image is credited to UCSD

Original Research: Closed access.
A multi-scale map of cell structure fusing protein images and interactions” by Trey Ideker et al. Nature


Abstract

A multi-scale map of cell structure fusing protein images and interactions

The cell is a multi-scale structure with modular organization across at least four orders of magnitude. Two central approaches for mapping this structure—protein fluorescent imaging and protein biophysical association—each generate extensive datasets, but of distinct qualities and resolutions that are typically treated separately.

Here we integrate immunofluorescence images in the Human Protein Atlas with affinity purifications in BioPlex to create a unified hierarchical map of human cell architecture. Integration is achieved by configuring each approach as a general measure of protein distance, then calibrating the two measures using machine learning.

The map, known as the multi-scale integrated cell (MuSIC 1.0), resolves 69 subcellular systems, of which approximately half are to our knowledge undocumented. Accordingly, we perform 134 additional affinity purifications and validate subunit associations for the majority of systems. The map reveals a pre-ribosomal RNA processing assembly and accessory factors, which we show govern rRNA maturation, and functional roles for SRRM1 and FAM120C in chromatin and RPS3A in splicing.

By integration across scales, MuSIC increases the resolution of imaging while giving protein interactions a spatial dimension, paving the way to incorporate diverse types of data in proteome-wide cell maps.

Join our Newsletter
I agree to have my personal information transferred to AWeber for Neuroscience Newsletter ( more information )
Sign up to receive our recent neuroscience headlines and summaries sent to your email once a day, totally free.
We hate spam and only use your email to contact you about newsletters. You can cancel your subscription any time.
  1. One thing that has caused me to doubt the completeness of our knowledge of the cell is the phenomenon of cellular movement. Many living cells move about with apparent purpose quickly and deftly for all the world like macroscopic animals. How does a mere ‘bag of chemicals’ accomplish this fete? It seems to me that an interaction of formed organelles within the cell is necessary to organize and accomplish such movements, not mere protein synthesis per se. The behavior of cells like mini-animals strongly suggests that there is a lot going on within them that is not explained by conventional model of the cell. It seems to me that cells must have within them higher and lower levels of organization just as is the case with macroscopic organisms. This is a mystery for the future which needs to be worked out.

  2. This is an error. It should say 1 1000th of a micron:

    “(A nanometer is one-billionth of a meter, or 1,000 microns.)”

Comments are closed.