Study Finds Evidence of Possible Link Between Herpes Simplex and Neurogenerative Diseases

Summary: Researchers discovered mutations of the OPTN gene resulted in increased herpesvirus 1 growth in the brains of mice, leading to the death of local neurons. This resulted in accelerated neurodegeneration. OPTN deficiency was also associated with impairments in immune response. While these findings are specific to the HSV-1 virus, researchers believe the findings may apply to up to eight herpesvirus infections.

Source: University of Illinois at Chicago

A new study by researchers at University of Illinois Chicago suggests that when the protein optineurin, or OPTN, is present in cells it restricts the spread of HSV-1, the herpes simplex virus type 1.

In a “first of its kind” study, researchers also found a potential direct connection between neurodegenerative diseases, such as Alzheimer’s disease, amyotrophic lateral sclerosis (ALS), glaucoma, and the herpesvirus, said Dr. Deepak Shukla, the Marion H. Schenk Esq. Professor in Ophthalmology for Research of the Aging Eye, and vice chair for research at UIC.

The research paper, “OPTN is a host intrinsic restriction factor against neuroinvasive HSV-1 infection,” led by Shukla, was published recently in the journal Nature Communications.

Researchers sought to discover why HSV-1 can become fatal for individuals who are immunocompromised but not for healthy individuals. Herpesviruses naturally infect the central nervous system and can result in degenerative brain and eye disorders, as well as encephalitis. However, in most individuals, the virus is suppressed during a primary infection before it can significantly damage the central nervous system.

The new research suggests why HSV-1 is suppressed: OPTN, a conserved autophagy receptor, selectively targets HSV-1 proteins to degradation by autophagy, explained Tejabhiram Yadavalli, a co-author of the study and visiting scholar at UIC’s department of ophthalmology and visual science.

“OPTN stops the virus from growing and it stops it by autophagy — engulfing the virus particles inside tiny vesicles called autophagosomes. The autophagy that happens is very selective. That has meaning for other viruses as well,” Shukla said.

The researchers believe the results from this study will apply to all eight different human herpesviruses.

For the study, mice with removed OPTN genes were infected with ocular HSV-1. The virus growth was much higher in the brains of animals without OPTN, killing local neurons and eventually leading to animal death. This shows there is a faster degeneration of neurons when OPTN is not there.

Additional studies are being planned to examine naturally occurring mutations in OPTN, such as the ones reported in glaucoma and ALS patients, and how they may affect neuronal health and HSV-1 infection, Shukla explained.

“Where you have mutated OPTN plus herpes, you have the recipe to create a disaster in terms of neurodegeneration,” Shukla said.

 “The study also shows there is an impairment of immune response when there is a deficiency in OPTN.  OPTN is needed to signal an influx of proper immune cells at the site of infection. When you don’t have it, you have issues,” said Chandrashekhar Patil, also a co-author of the study and a visiting scholar at UIC’s department of ophthalmology and visual science.

Some of those issues could include neurodegenerative disorders, which researchers believe further research may show.

The researchers believe the results from this study will apply to all eight different human herpesviruses. Image is in the public domain

“We think we will have data to show other viruses, such as Epstein-Barr, Kaposi’s sarcoma, varicella-zoster, are all going to share this mechanism because they share homologous proteins,” Shukla said.

Because the herpesvirus sits in neurons forever, there is speculation it is connected to neurodegenerative diseases. The immune system requires inflammation to constantly fight off the virus, and neurons have some degree of damage because of this continuous immune response, according to Dr. Tibor Valyi-Nagy, professor of pathology, director of neuropathology at UIC and research collaborator on the study.

The study also showed that animals without OPTN and infected with HSV-1 after 30 days lost the ability to recognize objects. Shukla said this could be an indication that having HSV-1 along with a mutation of OPTN could accelerate neuronal damage, which would translate into cognitive impairment.

“Part of our translational research can be how can we correct the problems with OPTN so that we don’t have issues with neurodegeneration,” Shukla said.

Additional authors are Joshua Ames, Rahul Suryawanshi, James Hopkins, Alexander Agelidis, Chandrashekhar Patil and Brian Fredericks, all of UIC, and Henry Tseng of Duke University Medical Center.

This research was supported by the National Institutes of Health and National Eye Institute grants (K08-EY021520-02, RO1 EY029426, P30 EY001792 and RO1 EY024710) as well as the Butner Pioneer Award, Duke Health Scholars and Research to Prevent Blindness unrestricted funds.

About this neurodegeneration and virology research news

Author: Lori Botterman
Source: University of Illinois at Chicago
Contact: Lori Botterman – University of Illinois at Chicago
Image: The image is in the public domain

Original Research: Open access.
OPTN is a host intrinsic restriction factor against neuroinvasive HSV-1 infection” by Joshua Ames, Tejabhiram Yadavalli, Rahul Suryawanshi, James Hopkins, Alexander Agelidis, Chandrashekhar Patil, Brian Fredericks, Henry Tseng, Tibor Valyi-Nagy & Deepak Shukla. Nature Communications


Abstract

OPTN is a host intrinsic restriction factor against neuroinvasive HSV-1 infection

Fast-replicating neurotropic herpesviruses exemplified by herpes simplex virus-1 (HSV-1) naturally infect the central nervous system (CNS).

However, most individuals intrinsically suppress the virus during a primary infection and preclude it from significantly damaging the CNS. Optineurin (OPTN) is a conserved autophagy receptor with little understanding of its role in neurotropic viral infections.

We show that OPTN selectively targets HSV-1 tegument protein, VP16, and the fusion glycoprotein, gB, to degradation by autophagy. OPTN-deficient mice challenged with HSV-1 show significant cognitive decline and susceptibility to lethal CNS infection.

OPTN deficiency unveils severe consequences for recruitment of adaptive immunity and suppression of neuronal necroptosis. Ocular HSV-1 infection is lethal without OPTN and is rescued using a necroptosis inhibitor.

These results place OPTN at the crux of neuronal survival from potentially lethal CNS viral infections.

Join our Newsletter
Thank you for subscribing.
Something went wrong.
I agree to have my personal information transferred to AWeber for Neuroscience Newsletter ( more information )
Sign up to receive our recent neuroscience headlines and summaries sent to your email once a day, totally free.
We hate spam and only use your email to contact you about newsletters. You can cancel your subscription any time.
Exit mobile version