This shows numbers and a brain.
The next steps for the researchers are to explore the inputs and outputs to FOF to understand the complete neural circuit. Credit: Neuroscience News

The Risky Brain: Unraveling the Neural Codes of Lottery Choices

Summary: Researchers pinpointed a key brain region in rats that determines their economic decisions when facing lottery-like uncertainties.

The frontal orienting field (FOF) was identified as a major player in encoding the value of risky decisions, while the posterior parietal cortex had a minor effect.

This discovery deepens our understanding of the neurobiology behind our own risky financial decisions in a world of economic uncertainty.

Key Facts:

  1. The study models the brain’s decision-making process in economic scenarios filled with uncertainty.
  2. Silencing the frontal orienting field (FOF) in rats’ brains made them less risk-tolerant.
  3. The FOF encodes the value of a potential lottery and compares it to a guaranteed reward, guiding decision-making.

Source: Sainsbury Wellcome Center

Neuroscientists have uncovered a key brain area in rats that encodes the value of economic choices when faced with the uncertainty of a lottery. This is the first time the causal role of frontal and parietal cortex has been tested in economic decision-making. The findings provide a foundation for understanding the neurobiology of risky decisions.

“We live in a world where financial decisions have a huge impact, and our economic choices are typically associated with uncertainty. For example, right now the cost of living is rising and savers may be choosing whether or not to invest in the stock market to try to avoid their savings being diminished by high inflation.

“We wanted to develop a rodent model of economic decision-making that is similar to the kinds of problems humans encounter, so that we can understand how the brain makes choices when faced with uncertainty,” said Jeffrey Erlich, Group Leader at the Sainsbury Wellcome Centre and corresponding author on the paper.

The researchers at the Sainsbury Wellcome Centre at UCL and NYU Shanghai presented rats with the choice of a ‘surebet’ (a small but guaranteed reward), or a lottery with a fixed probability. In each trial, a sound was played to the rats to indicate the magnitude of the potential lottery reward.

“We presented six sounds which each mapped to a different lottery offer. The worst offer was zero, so in that case the rats should never choose to play the lottery. This gave us a baseline, as there’s no reward maximising strategy that would ever choose zero. We were therefore able to quantify the offer-independent biases, which helped us get a better estimate of the true risk tolerance of the rats,” explained Erlich.

To test the causal role of the frontal and parietal cortex in the rats’ decisions of whether to play the lottery, the researchers temporarily silenced two specific brain areas: the frontal orienting field (FOF) and posterior parietal cortex (PPC). The team used pharmacological and optogenetic silencing to confirm the results.

The researchers found that the animals were less willing to take risks when FOF was silenced (with either pharmacological or optogenetic silencing), whereas there was a smaller, short-lived, effect when PPC was silenced.

Using a Bayesian hierarchical model, the team found that FOF was affecting risk tolerance rather than a choice bias, as the rats were still willing to play the lottery when the potential reward was very high, but they became less likely to play when the lottery had an intermediate potential value.

As expected, their behaviour was unchanged when the potential lottery value was low.

To understand this behaviour, the researchers developed a dynamical model of FOF silencing. The model suggests that the FOF is coding the value of the lottery and comparing it with the remembered value of the surebet, which did not change from trial to trial.

And so, when FOF is silenced, the value of the lottery (which is dynamic as it is encoded on a trial-by-trial basis) shrinks, but the surebet value remains stable. This results in the rats shifting their choices to the surebet.

The researchers found that this shift to the surebet occurred mostly for the choices near the boundary where the expected value of the lottery was only slightly higher than the value of the surebet. This is because the expected value of the lotteries that had much higher potential values than the surebet were still higher even after the negative shift from the FOF silencing.

“Behaviourally we found that the effect of FOF silencing caused a change in risk preference. The way we think this can be explained is that the FOF is tracking the value of the lottery and comparing it to the value of the surebet.

“Therefore, silencing the FOF diminishes the animal’s estimate of the value of the lottery. Our simulation validated this hypothesis and when we recorded from neurons in FOF we found that they encoded the value of the lottery,” explained Erlich.

The next steps for the researchers are to explore the inputs and outputs to FOF to understand the complete neural circuit. The team are also developing a new version of the task that allows multistage decision-making through a second cue in addition to the sound. This will allow them delve into how decisions are transformed into actions.  

Funding: This research was supported by the 111 project (Base B16018), the National Natural Science Foundation of China (NSFC), the NYU-ECNU Institute of Brain and Cognitive Science at NYU Shanghai and by the funders of the Sainsbury Wellcome Centre: Gatsby Charitable Foundation and Wellcome.

About this neuroscience research news

Author: April Cashin-Garbutt
Source: Sainsbury Wellcome Center
Contact: April Cashin-Garbutt – Sainsbury Wellcome Center
Image: The image is credited to Neuroscience News

Original Research: Open access.
The rat frontal orienting field dynamically encodes value for economic decisions under risk” by Jeffrey Erlich et al. Nature Neuroscience


Abstract

The rat frontal orienting field dynamically encodes value for economic decisions under risk

Frontal and parietal cortex are implicated in economic decision-making, but their causal roles are untested. Here we silenced the frontal orienting field (FOF) and posterior parietal cortex (PPC) while rats chose between a cued lottery and a small stable surebet. PPC inactivations produced minimal short-lived effects. FOF inactivations reliably reduced lottery choices.

A mixed-agent model of choice indicated that silencing the FOF caused a change in the curvature of the rats’ utility function (U = Vρ). Consistent with this finding, single-neuron and population analyses of neural activity confirmed that the FOF encodes the lottery value on each trial.

A dynamical model, which accounts for electrophysiological and silencing results, suggests that the FOF represents the current lottery value to compare against the remembered surebet value.

These results demonstrate that the FOF is a critical node in the neural circuit for the dynamic representation of action values for choice under risk.

Join our Newsletter
I agree to have my personal information transferred to AWeber for Neuroscience Newsletter ( more information )
Sign up to receive our recent neuroscience headlines and summaries sent to your email once a day, totally free.
We hate spam and only use your email to contact you about newsletters. You can cancel your subscription any time.
  1. To win the lottery some will say it is a thing of Luck, others believe it to be destiny, either way is right, if they have worked for you then you can factly tell they are true. I am a Famous Gambler here in Canada, every weekend I spend heavily on Gambling, a minimum of $15-$40k monthly. A man Like me is a Tiger, I will do anything to stay at the top. I have tried different means to win the lottery, to cut the story short. I Won $55m Lotto Max, with the numbers of Doc SOTU. IF you are a gambler or you play the lottery, to step up your game Just Mail [email protected] | Congrats.

Comments are closed.