7   +   5   =  

Gaming Camera Could Aid Multiple Sclerosis Treatment

Summary: A common game system camera could be used as an effective means of evaluating gait and walking problems in people with multiple sclerosis.

Source: McGill University.

3-D depth-sensing camera shown to measure walking difficulties.

A commonly used device found in living rooms around the world could be a cheap and effective means of evaluating the walking difficulties of multiple sclerosis (MS) patients.

The Microsoft Kinect is a 3D depth-sensing camera used in interactive video activities such as tennis and dancing. It can be hooked up to an Xbox gaming console or a Windows computer.

A team of researchers led by McGill University postdoctoral fellow Farnood Gholami, supervised by Jozsef Kövecses from the Department of Mechanical Engineering and Centre for Intelligent Machines, collaborated with Daria Trojan, a physiatrist in the Department of Neurology and Neurosurgery working at the Montreal Neurological Institute and Hospital, to test whether the Kinect could detect the differences in gait of MS patients compared to healthy individuals.

In current clinical practice, the walking movement of MS patients is usually assessed by their doctors, and subjective evaluations may distort results: two different clinicians may give the same patient different evaluations. Using a camera that detects movement and computer algorithms that quantify the patients’ walking patterns can reduce potential for human error.

Gholami captured the movement of 10 MS patients and 10 members of an age-and-sex-matched control group using the Kinect device. The MS patients had previously been assessed for gait abnormalities using the traditional clinician method.

Using the data, the team then developed computer algorithms that quantified gait characteristics of MS patients and healthy people. The investigators found that gait characteristics measured with the Kinect camera and analyzed with the developed algorithms were reproducible when assessed at one visit and were different between MS patients and the healthy individuals. Moreover, the gait characteristics of MS patients obtained by the algorithm were correlated with clinical measures of gait. In addition, the algorithms could mathematically define the characteristics of gait in MS patients at different severity levels, accurately determining his/her level of gait abnormality.

Gholami says he became interested in using motion capture technology for clinical purposes as a PhD student, but the equipment he was using at the time was very expensive, difficult to use, and non-portable, making widespread clinical use prohibitive. The Kinect device gave him an inexpensive tool to use that appears to be still accurate enough to do the job.

“This tool may help the clinician provide a better diagnosis of gait pathology, and may be used to observe if a prescribed medication has been effective on the gait of the patient or not,” he says. “Our developed framework can likely be used for other diseases causing gait abnormalities as well, for instance Parkinson’s disease.”

Image shows a Kinect camera.

Gholami captured the movement of 10 MS patients and 10 members of an age-and-sex-matched control group using the Kinect device. The MS patients had previously been assessed for gait abnormalities using the traditional clinician method. NeuroscienceNews.com image is for illustrative purposes only.

Trojan says the tool could be useful “to assess treatment effects of certain interventions such as rehabilitation or medication, and to document MS disease progression as reflected by gait deterioration. It may also be useful as a measure in clinical trials.”

Gholami says the next step is to conduct a study with a larger group of MS patients, including evaluation in a gait laboratory, using a newer version of the Kinect device that promises to improve accuracy.

This work was completed in collaboration with Behnood Gholami at AreteX Systems Inc., Hoboken, NJ, and Wassim M. Haddad at Georgia Institute of Technology, Atlanta, GA.

About this neurology research article

Funding: This research was made possible with funds from the Natural Sciences and Engineering Research Council of Canada.

Source: Shawn Hayward – McGill University
Image Source: This NeuroscienceNews.com image is for illustrative purposes and is licensed CC BY SA 3.0.
Original Research: Abstract for “A Microsoft Kinect-Based Point-of-Care Gait Assessment Framework for Multiple Sclerosis Patients” by Farnood Gholami; Daria Trojan; Jozsef Kovecses; Wassim Haddad; and Behnood Gholami in IEEE Journal of Biomedical and Health Informatics. Published online July 21 2016 doi:10.1109/JBHI.2016.2593692

Cite This NeuroscienceNews.com Article
McGill University. “Gaming Camera Could Aid Multiple Sclerosis Treatment.” NeuroscienceNews. NeuroscienceNews, 15 August 2016.
<http://neurosciencenews.com/gaming-glasses-ms-4851/>.
McGill University. (2016, August 15). Gaming Camera Could Aid Multiple Sclerosis Treatment. NeuroscienceNew. Retrieved August 15, 2016 from http://neurosciencenews.com/gaming-glasses-ms-4851/
McGill University. “Gaming Camera Could Aid Multiple Sclerosis Treatment.” http://neurosciencenews.com/gaming-glasses-ms-4851/ (accessed August 15, 2016).

Abstract

A Microsoft Kinect-Based Point-of-Care Gait Assessment Framework for Multiple Sclerosis Patients

Gait impairment is a prevalent and important difficulty for patients with multiple sclerosis (MS), a common neurological disorder. An easy to use tool to objectively evaluate gait in MS patients in a clinical setting can assist clinicians to perform an objective assessment. The overall objective of this study is to develop a framework to quantify gait abnormalities in MS patients using the Microsoft Kinect for Windows sensor; an inexpensive, easy to use, portable camera. Specifically, we aim to evaluate its feasibility for utilization in a clinical setting, assess its reliability, evaluate the validity of gait indices obtained, and evaluate a novel set of gait indices based on the concept of dynamic time warping. In this study, 10 ambulatory MS patients, and 10 age and sex-matched normal controls were studied at one session in a clinical setting with gait assessment using a Kinect camera. The Expanded Disability Status Scale (EDSS) clinical ambulation score was calculated for the MS subjects, and patients completed the Multiple Sclerosis Walking Scale (MSWS). Based on this study, we established the potential feasibility of using a Microsoft Kinect camera in a clinical setting. Seven out of the eight gait indices obtained using the proposed method were reliable with intra-class correlation coefficients ranging from 0.61 to 0.99. All eight MS gait indices were significantly different from those of the controls (p-values less than 0.05). Finally, seven out of the eight MS gait indices were correlated with the objective and subjective gait measures (Pearson’s correlation coefficients greater than 0.40). The study shows that the Kinect camera is as an easy to use tool to assess gait in MS patients in a clinical setting.

“A Microsoft Kinect-Based Point-of-Care Gait Assessment Framework for Multiple Sclerosis Patients” by Farnood Gholami; Daria Trojan; Jozsef Kovecses; Wassim Haddad; and Behnood Gholami in IEEE Journal of Biomedical and Health Informatics. Published online July 21 2016 doi:10.1109/JBHI.2016.2593692

Feel free to share this Neuroscience News.
Join our Newsletter
I agree to have my personal information transferred to AWeber for Neuroscience Newsletter ( more information )
Sign up to receive the latest neuroscience headlines and summaries sent to your email daily from NeuroscienceNews.com
We hate spam and only use your email to contact you about newsletters. We do not sell email addresses. You can cancel your subscription any time.
No more articles