The Spotlight of Attention is More Like a Strobe

Summary: A new study EEG study reveals human and monkey attention pulses in and out four times per second.

Source: Princeton.

You don’t focus as well as you think you do.

That’s the fundamental finding of a team of researchers from Princeton University and the University of California-Berkeley who studied monkeys and humans and discovered that attention pulses in and out four times per second.

“Our subjective experience of the visual world is an illusion,” said Sabine Kastner, a professor of psychology and the Princeton Neuroscience Institute (PNI). “Perception is discontinuous, going rhythmically through short time windows when we can perceive more or less.”

The researchers use different metaphors to describe this throb of attention, including a spotlight that waxes and wanes in its intensity. Four times per second — once every 250 milliseconds — the spotlight dims and the house lights come up. Instead of focusing on the action “onstage,” your brain takes in everything else around you, say the scientists.

Their work appears as a set of back-to-back papers in in the Aug. 22 issue of Neuron; one paper focuses on human research subjects, the other on macaque monkeys.

“The question is: How can something that varies in time support our seemingly continuous perception of the world?” said Berkeley’s Randolph Helfrich, first author on the human-focused paper. “There are only two options: Is the data wrong, or is our understanding of our perception biased? Our research shows that it’s the latter. Our brains fuse our perceptions into a coherent movie — we don’t experience the gaps.”

Perception doesn’t flicker on and off, the researchers emphasized, but four times per second it cycles between periods of maximum focus and periods of a broader situational awareness.

“Every 250 milliseconds, you have an opportunity to switch attention,” said Ian Fiebelkorn, an associate research scholar in PNI and the first author on the macaque-focused paper. You won’t necessarily shift your focus to a new subject, he said, but your brain has a chance to re-examine your priorities and decide if it wants to.

Brain rhythms have been known for almost a century, since electroencephalograms — better known as EEGs — were invented in 1924. “But we didn’t really understand what these rhythms are for,” said Kastner, who was the senior author on both papers. “We can now link brain rhythms for the first time to our behavior, on a moment-to-moment basis. … This is a very surprising finding, more since these rhythmic processes are evolutionarily old — we find them in non-human primates as well as in our own species.”

This pulsing attention must present an evolutionary advantage, the researchers suggest, perhaps because focusing too intently on one subject could allow a threat to catch us by surprise.

“Attention is fluid, and you want it to be fluid,” said Fiebelkorn. “You don’t want to be over-locked on anything. It seems like it’s an evolutionary advantage to have these windows of opportunity where you’re checking in with your environment.”

a brain
This pulsing attention must present an evolutionary advantage, the researchers suggest, perhaps because focusing too intently on one subject could allow a threat to catch us by surprise.
NeuroscienceNews.com image is in the public domain.

“It’s an elegant way to allocate brain resources — to sample the environment and not have any lapses,” said Robert Knight, a professor of psychology and neuroscience at Berkeley and a co-author on the human-focused paper.

Kastner’s lab focuses on macaque research, so she reached out to Knight’s lab, which does similar studies on humans. The resulting papers are unprecedented, Knight said.

“This is cross-species validation of a fundamental aspect of human behavior,” he said. “I have not seen any back-to-back human and monkey papers appear anywhere … and these are in the same issue of Neuron, a preeminent journal.”

Fiebelkorn agreed: “We have an assumption that what we find in the monkey will hold up in humans, but it’s rarely checked as carefully as it is here.”

“Originally, we wanted to study something very different,” said Kastner. “We wanted to ask how we can select objects from our cluttered visual environments. … We were particularly looking at how the intake of visual information unfolds over time — something that is rarely done in behavioral studies — and this revealed the rhythmic structure of perception. It was a complete surprise finding.”

About this neuroscience research article

Funding: Funding provided by the Alexander von Humboldt Foundation (Feodor Lynen Research Fellowship), an intramural fellowship from the University of Oslo Department of Psychology, the McDonnell Foundation and several grants from the National Institute of Health: R01MH109954, R37NS21135, training fellowship F32EY023465, the National Institute of Mental Health grant R01MH064063, the Silvio O. Conte Center grant 1P50MH109429, and the National Eye Institute grants RO1EY017699 and R21EY023565.

Source: Liz Fuller-Wright – Princeton
Publisher: Organized by NeuroscienceNews.com.
Image Source: NeuroscienceNews.com image is in the public domain.
Original Research: Abstract for “A Dynamic Interplay within the Frontoparietal Network Underlies Rhythmic Spatial Attention” by Ian C. Fiebelkorn, Mark A. Pinsk, and Sabine Kastner in Neuron. Published August 22 2018.
doi:10.1016/j.neuron.2018.07.038

Cite This NeuroscienceNews.com Article

[cbtabs][cbtab title=”MLA”]Princeton”The Spotlight of Attention is More Like a Strobe.” NeuroscienceNews. NeuroscienceNews, 22 August 2018.
<https://neurosciencenews.com/attention-strobe-9729/>.[/cbtab][cbtab title=”APA”]Princeton(2018, August 22). The Spotlight of Attention is More Like a Strobe. NeuroscienceNews. Retrieved August 22, 2018 from https://neurosciencenews.com/attention-strobe-9729/[/cbtab][cbtab title=”Chicago”]Princeton”The Spotlight of Attention is More Like a Strobe.” https://neurosciencenews.com/attention-strobe-9729/ (accessed August 22, 2018).[/cbtab][/cbtabs]


Abstract

A Dynamic Interplay within the Frontoparietal Network Underlies Rhythmic Spatial Attention

Classic studies of spatial attention assumed that its neural and behavioral effects were continuous over time. Recent behavioral studies have instead revealed that spatial attention leads to alternating periods of heightened or diminished perceptual sensitivity. Yet, the neural basis of these rhythmic fluctuations has remained largely unknown. We show that a dynamic interplay within the macaque frontoparietal network accounts for the rhythmic properties of spatial attention. Neural oscillations characterize functional interactions between the frontal eye fields (FEF) and the lateral intraparietal area (LIP), with theta phase (3–8 Hz) coordinating two rhythmically alternating states. The first is defined by FEF-dominated beta-band activity, associated with suppressed attentional shifts, and LIP-dominated gamma-band activity, associated with enhanced visual processing and better behavioral performance. The second is defined by LIP-specific alpha-band activity, associated with attenuated visual processing and worse behavioral performance. Our findings reveal how network-level interactions organize environmental sampling into rhythmic cycles.

Feel free to share this Neuroscience News.
Join our Newsletter
I agree to have my personal information transferred to AWeber for Neuroscience Newsletter ( more information )
Sign up to receive our recent neuroscience headlines and summaries sent to your email once a day, totally free.
We hate spam and only use your email to contact you about newsletters. You can cancel your subscription any time.