A password will be e-mailed to you.

Experimental System Sheds Light on How Memory Loss May Occur

Summary: Studying the hippocampus and entorhinal cortex, researchers have discovered new information about how dysfunction of the circuit that connects the two areas may contribute to memory loss in Alzheimer’s.

Source: Baylor College of Medicine.

Two interconnected brain areas – the hippocampus and the entorhinal cortex – help us to know where we are and to remember it later. By studying these brain areas, researchers at Baylor College of Medicine, Rice University, The University of Texas MD Anderson Cancer Center and the National Cancer Institute have uncovered new information about how dysfunction of this circuit may contribute to memory loss in Alzheimer’s disease. Their results appear in Cell Reports.

“We created a new mouse model in which we showed that spatial memory decays when the entorhinal cortex is not functioning properly,” said co-corresponding author Dr. Joanna Jankowsky, associate professor of neuroscience at Baylor. “I think of the entorhinal area as a funnel. It takes information from other sensory cortices – the parts of the brain responsible for vision, hearing, smell, touch, and taste – and funnels it into the hippocampus. The hippocampus then binds this disparate information into a cohesive memory that can be reactivated in full by recalling only one part. But the hippocampus also plays a role in spatial navigation by telling us where we are in the world. These two functions converge in the same cells, and our study set out to examine this duality.”

The new mouse model was genetically engineered to carry a particular surface receptor on the cells of the entorhinal cortex. When this receptor was activated by administering the drug ivermectin to the mice, the cells of the entorhinal cortex silenced their activity. They stopped funnelling information to the hippocampus. This system allowed the scientists to turn off the entorhinal cortex, and to determine how this affected hippocampal function.

Brain activity in the hippocampus changes after silencing the enthorinal cortex

“We know that the hippocampal neurons generate pulses of activity when the animal is in a particular space,” said co-corresponding author Dr. Daoyun Ji, assistant professor of molecular & cell biology at Baylor.

To measure the electrical activity in the hippocampus, the researchers inserted tiny probes – thinner than a human hair – into the brains of mice. “We inserted the probes into the hippocampus where they could detect the electrical signal generated by active neurons. We recorded this signal while the animal explored its surroundings. As the mouse learned its environment, we picked up the electrical pulses produced by the neurons – up to 50 neurons simultaneously – so that we could examine the pattern that emerged. When the animal was in one area of the room, a particular brain pattern emerged. The pattern changed as the animal moved to another area. We could predict where the animal was by looking at its pattern of brain activity,” said Ji.

When the researchers turned off the entorhinal cortex with ivermectin, they saw the pattern of electrical signals in the hippocampus changed. Signals that had previously been associated with a particular location now became active in a different part of the room. “We found that the hippocampus had remapped, the memory code was scrambled,” said Ji. But would mice whose mental map had rearranged itself also lose their memory for the location they learned before re-mapping?

Image shows a brain.

When the researchers turned off the entorhinal cortex with ivermectin, they saw the pattern of electrical signals in the hippocampus changed. NeuroscienceNews.com image is adapted from the Baylor College of Medicine press release. Credit: NIH.

To answer this question, the researchers trained mice to find a hidden escape platform submerged in a water maze using visual clues. Then some of the mice received ivermectin to inactivate the entorhinal cortex, while others did not. “The mice had been trained for 7 to 10 days, so they knew where to go to escape the pool. But when we turned off the entorhinal cortex, their hippocampal map got scrambled and the animals couldn’t remember how to exit the pool,” said Ji.

“Our findings put us one step closer to understanding how our hippocampus may be required not only to learn a new environment, but also to remember it later,” said Jankowsky. “The system we used to silence neurons with ivermectin adds to a growing set of genetic tools created over the last 10 years to probe brain function. Because ivermectin is both safe and inexpensive, this particular system can be used for longer periods of inactivation appropriate for studying chronic conditions like Alzheimer’s or Parkinson’s. That’s the thing I am most excited about with this work,” said Jankowsky.

About this memory research article

Other contributors to this work include Rong Zhao, Stacy D. Grunke, Madhusudhanan M. Keralapurath, Michael J. Yetman, Alexander Lam, Tang-Cheng Lee, Konstantinos Sousounis, Yongying Jiang, Deborah A. Swing and Lino Tessarollo.

Funding: This work was funded by a National Institutes of Health Director’s New Innovator Award (DP2 OD001734, R21 MH101583, T32 AG000183), BrightFocus Foundation postdoctoral fellowship A2015016F, a gift from the Gillson Longenbaugh Foundation, and seed funds from Baylor College of Medicine were supported by the Intramural Research Program of the NIH, the National Cancer Institute and the Center for Cancer Research.

Source: Graciela Gutierrez – Baylor College of Medicine
Image Source: This NeuroscienceNews.com image is credited to the NIH.
Original Research: Full open access research for “Impaired Recall of Positional Memory following Chemogenetic Disruption of Place Field Stability” by Rong Zhao, Stacy D. Grunke, Madhusudhanan M. Keralapurath, Michael J. Yetman, Alexander Lam, Tang-Cheng Lee, Konstantinos Sousounis, Yongying Jiang, Deborah A. Swing, Lino Tessarollo, Daoyun Ji, and Joanna L. Jankowsky in Cell Reports. Published online June 30 2016 doi:10.1016/j.celrep.2016.06.032

Cite This NeuroscienceNews.com Article
Baylor College of Medicine. “Experimental System Sheds Light on How Memory Loss May Occur.” NeuroscienceNews. NeuroscienceNews, 30 June 2016.
<http://neurosciencenews.com/entorhinal-cortex-memory-loss-4605/>.
Baylor College of Medicine. (2016, June 30). Experimental System Sheds Light on How Memory Loss May Occur. NeuroscienceNew. Retrieved June 30, 2016 from http://neurosciencenews.com/entorhinal-cortex-memory-loss-4605/
Baylor College of Medicine. “Experimental System Sheds Light on How Memory Loss May Occur.” http://neurosciencenews.com/entorhinal-cortex-memory-loss-4605/ (accessed June 30, 2016).

Abstract

Impaired Recall of Positional Memory following Chemogenetic Disruption of Place Field Stability

Highlights
•Transgenic model for spatiotemporal control of neuronal silencing via systemic ligand
•Acute silencing of entorhinal cortex causes global disruption of CA1 spatial tuning
•Concomitant with CA1 remapping, entorhinal silencing degrades spatial recall
•Both place field stability and spatial memory require the same ongoing cortical input

Summary
The neural network of the temporal lobe is thought to provide a cognitive map of our surroundings. Functional analysis of this network has been hampered by coarse tools that often result in collateral damage to other circuits. We developed a chemogenetic system to temporally control electrical input into the hippocampus. When entorhinal input to the perforant path was acutely silenced, hippocampal firing patterns became destabilized and underwent extensive remapping. We also found that spatial memory acquired prior to neural silencing was impaired by loss of input through the perforant path. Together, our experiments show that manipulation of entorhinal activity destabilizes spatial coding and disrupts spatial memory. Moreover, we introduce a chemogenetic model for non-invasive neuronal silencing that offers multiple advantages over existing strategies in this setting.

“Impaired Recall of Positional Memory following Chemogenetic Disruption of Place Field Stability” by Rong Zhao, Stacy D. Grunke, Madhusudhanan M. Keralapurath, Michael J. Yetman, Alexander Lam, Tang-Cheng Lee, Konstantinos Sousounis, Yongying Jiang, Deborah A. Swing, Lino Tessarollo, Daoyun Ji, and Joanna L. Jankowsky in Cell Reports. Published online June 30 2016 doi:10.1016/j.celrep.2016.06.032

Feel free to share this Neuroscience News.
Join our Newsletter
Sign up to receive the latest neuroscience headlines and summaries sent to your email daily from NeuroscienceNews.com
We hate spam. Your email address will not be sold or shared with anyone else.
No more articles