Breaking Down the Walls: Complex Learning Dismantles Barriers in the Brain

By learning a complex task over a long period, we all have the power to break down barriers in the brain that were thought to be fixed.

Biology lessons teach us that the brain is divided into separate areas, each of which processes a specific sense. But findings to be published in eLife show we can supercharge it to be more flexible.

Scientists at the Jagiellonian University in Poland taught Braille to sighted individuals and found that learning such a complex tactile task activates the visual cortex, when you’d only expect it to activate the tactile one.

“The textbooks tell us that the visual cortex processes visual tasks while the tactile cortex, called the somatosensory cortex, processes tasks related to touch,” says lead author Marcin Szwed from Jagiellonian University.

“Our findings tear up that view, showing we can establish new connections if we undertake a complex enough task and are given long enough to learn it.”

The findings could have implications for our power to bend different sections of the brain to our will by learning other demanding skills, such as playing a musical instrument or learning to drive. The flexibility occurs because the brain overcomes the normal division of labour and establishes new connections to boost its power.

It was already known that the brain can reorganize after a massive injury or as a result of massive sensory deprivation such as blindness. The visual cortex of the blind, deprived of its input, adapts for other tasks such as speech, memory, and reading Braille by touch. There has been speculation that this might also be possible in the normal, adult brain, but there has been no conclusive evidence.

“For the first time we’re able to show that large-scale reorganization is a viable mechanism that the sighted, adult brain is able to recruit when it is sufficiently challenged,” says Szwed.

Over nine months, 29 volunteers were taught to read Braille while blindfolded. They achieved reading speeds of between 0 and 17 words per minute. Before and after the course, they took part in a functional Magnetic Resonance Imaging (fMRI) experiment to test the impact of their learning on regions of the brain. This revealed that following the course, areas of the visual cortex, particularly the Visual Word Form Area, were activated and that connections with the tactile cortex were established.

Image shows a sign written in Braille.

Over nine months, 29 volunteers were taught to read Braille while blindfolded. They achieved reading speeds of between 0 and 17 words per minute. Before and after the course, they took part in a functional Magnetic Resonance Imaging (fMRI) experiment to test the impact of their learning on regions of the brain. Image is for illustrative purposes only.

In an additional experiment using transcranial magnetic stimulation, scientists applied magnetic field from a coil to selectively suppress the Visual Word Form Area in the brains of nine volunteers. This impaired their ability to read Braille, confirming the role of this site for the task. The results also discount the hypothesis that the visual cortex could have just been activated because volunteers used their imaginations to picture Braille dots.

“We are all capable of retuning our brains if we’re prepared to put the work in,” says Szwed.

He asserts that the findings call for a reassessment of our view of the functional organization of the human brain, which is more flexible than the brains of other primates.

“The extra flexibility that we have uncovered might be one those features that made us human, and allowed us to create a sophisticated culture, with pianos and Braille alphabet,” he says.

About this neuroscience research

Source: Zoe Dunford – eLife
Image Source: The image is credited to Emory University.
Original Research: Full open access research for “Massive cortical reorganization in sighted Braille readers” to Katarzyna Siuda-Krzywicka, Łukasz Bola, Małgorzata Paplińska, Ewa Sumera, Katarzyna Jednoróg, Artur Marchewka, Magdalena W Śliwińska, Amir Amedi, and Marcin Szwed in eLife. Published online March 15 2016 doi:10.7554/eLife.10762


Abstract

Massive cortical reorganization in sighted Braille readers

The brain is capable of large-scale reorganization in blindness or after massive injury. Such reorganization crosses the division into separate sensory cortices (visual, somatosensory…). As its result, the visual cortex of the blind becomes active during tactile Braille reading. Although the possibility of such reorganization in the normal, adult brain has been raised, definitive evidence has been lacking. Here, we demonstrate such extensive reorganization in normal, sighted adults who learned Braille while their brain activity was investigated with fMRI and transcranial magnetic stimulation (TMS). Subjects showed enhanced activity for tactile reading in the visual cortex, including the visual word form area (VWFA) that was modulated by their Braille reading speed and strengthened resting-state connectivity between visual and somatosensory cortices. Moreover, TMS disruption of VWFA activity decreased their tactile reading accuracy. Our results indicate that large-scale reorganization is a viable mechanism recruited when learning complex skills.

“Massive cortical reorganization in sighted Braille readers” to Katarzyna Siuda-Krzywicka, Łukasz Bola, Małgorzata Paplińska, Ewa Sumera, Katarzyna Jednoróg, Artur Marchewka, Magdalena W Śliwińska, Amir Amedi, and Marcin Szwed in eLife. Published online March 15 2016 doi:10.7554/eLife.10762

Feel free to share this Neuroscience News.