LPS recognition microglia pollution

The image shows the treated and untreated samples mentioned in the caption above.

The Block lab’s research shows that the same molecular machinery responsible for recognition of lipopolysaccharide (LPS, a component of the outer wall of gram negative bacteria that is a potent trigger of the innate immune response), the consequent production of toxic cytokines and reactive oxygen species, and internalization/removal of the immune trigger also regulate this brain cell’s response to air pollution, causing a toxic misunderstanding in the brain. This figure shows live imaging with confocal microscopy of untreated microglia (left panel) and microglia internalizing fluorescent green labeled LPS(right panel) at 3 hours after exposure. The green LPS accumulates in the cell in a beneficial attempt to remove the noxious stimulus, but molecules toxic to bystander cells are simultaneously being released from microglia, a deleterious process similar to what occurs when this cell type interacts with the small particle components of air pollution. Credit Michelle Block, Ph.D./VCU.

Join our Newsletter
I agree to have my personal information transferred to AWeber for Neuroscience Newsletter ( more information )
Sign up to receive the latest neuroscience headlines and summaries sent to your email daily from NeuroscienceNews.com
We hate spam and only use your email to contact you about newsletters. We do not sell email addresses. You can cancel your subscription any time.
No more articles