How Estrogen May Stop Infection Induced Brain Inflammation

Summary: A new study reports estrogen synthesis may help to prevent neuroinflammation caused by infection in other areas of the body. Estrogen synthesis is a natural occurring process in the brains of specific song birds.

Source: American University.

The chemical best-known as a female reproductive hormone–estrogen–could help fight off neurodegenerative conditions and diseases in the future. Now, new research by American University neuroscience Professor Colin Saldanha shows that estrogen synthesis, a process naturally occurring in the brains of zebra finches, may also fight off neuroinflammation caused by infection that occurs elsewhere in the body. The finding reveals clues about the interplay between the body’s neuroendocrine and immune systems.

While inflammation is a normal part of immune response, in the brain, too much inflammation can cause degenerative effects, or in the worst-case scenario, death. Humans and other mammals produce estrogen in the brain, but songbirds have evolved a rapid way to harness estrogen to regulate inflammation following trauma to the brain. Saldanha wanted to take his experiment on estrogen in the songbird brain and see if the birds responded similarly when faced with everyday infections that pose a threat, such as flu. Indeed, the experiment revealed that estrogen synthesis in the brain increased in response to infection elsewhere in the body. So why does the brain start making a sex hormone in response to a sickness or bacterial infection?

“Possibly to protect vulnerable brain circuits, and to keep the brain from being overtaken by infection or chronic inflammation,” Saldanha said. “Ask any physician. Infections, once they get in the brain, are difficult to control. The estrogen synthesis could be in response to protect neural circuits, of any kind, from damage an infection could wield if it travels to the brain.”

Image shows a brain slice.
Low-power (A) and high-power (B) photomicrographs depicting aromatase-positive neurons following LPS treatment. Note the presence of neuronal, but not glial aromatase expression in the diencephalon and telencephalon. Bed nucleus of the stria terminalis (BnST), preoptic area (POA), anterior commissure (AC), lateral ventricle (lv) and midline (m). Magnification bars = 200 μm (A) and 75 μm (B). NeuroscienceNews.com image is credited to Saldanha et al./Scientific Reports.

In the experiment, the findings of which published today in the open-access journal Scientific Reports, Saldanha and his colleagues simulated an infection. One group of songbirds received a chemical to activate the immune system and simulate a bacterial infection. Birds in the control group received an injection of saline. Within two hours the pathogen-injected birds showed classic signs of immune response and sickness behaviors like listlessness, fever and loss of appetite. After 24 hours, the sick birds were on the rebound – and showing elevated levels of estrogen in their brains and a decrease in cytokines, proteins secreted as part of the immune response.

Two types of brain cells synthesize estrogen: neurons and astrocytes. The cells that made estrogen in response to the infection were neurons. More neurons appeared to have switched on to produce estrogen. The next step of the research will be to measure to see how much estrogen. More research is needed, but the findings are strong evidence for a correlation between estrogen synthesis and inflammation control following an infection in the body. Songbirds could be using estrogen to combat the infection and, additionally, protect the brain from any consequences.

Figuring out how these natural processes work in songbirds paves the way for study in mammals, to figure out potential therapies and ways that humans can make use of estrogen to slow brain degeneration and inflammation, the kind that results from injury such as stroke, Alzheimer’s or Parkinson’s.

About this neuroscience research article

Source: Rebecca Basu – American University
Image Source: NeuroscienceNews.com image is credited to Saldanha et al./Scientific Reports.
Original Research: Full open access research for “Activation of the peripheral immune system regulates neuronal aromatase in the adult zebra finch brain” by Alyssa L. Pedersen, Cassie J. Gould & Colin J. Saldanha in Scientific Reports. Published online August 31 2017 doi:10.1038/s41598-017-10573-x

Cite This NeuroscienceNews.com Article

[cbtabs][cbtab title=”MLA”]American University “How Estrogen May Stop Infection Induced Brain Inflammation.” NeuroscienceNews. NeuroscienceNews, 1 September 2017.
<https://neurosciencenews.com/estrogen-neuroinflammation-7392/>.[/cbtab][cbtab title=”APA”]American University (2017, September 1). How Estrogen May Stop Infection Induced Brain Inflammation. NeuroscienceNew. Retrieved September 1, 2017 from https://neurosciencenews.com/estrogen-neuroinflammation-7392/[/cbtab][cbtab title=”Chicago”]American University “How Estrogen May Stop Infection Induced Brain Inflammation.” https://neurosciencenews.com/estrogen-neuroinflammation-7392/ (accessed September 1, 2017).[/cbtab][/cbtabs]


Abstract

Activation of the peripheral immune system regulates neuronal aromatase in the adult zebra finch brain

Estradiol provision via neural aromatization decreases neuro-inflammation and –degeneration, but almost nothing is known about the interactions between the peripheral immune system and brain aromatase. Given the vulnerability of the CNS we reasoned that brain aromatization may protect circuits from the threats of peripheral infection; perhaps shielding cells that are less resilient from the degeneration associated with peripheral infection or trauma. Lipopolysaccharide (LPS) or vehicle was administered peripherally to adult zebra finches and sickness behavior was recorded 2 or 24 hours later. The central transcription of cytokines and aromatase was measured, as were telencephalic aromatase activity and immunoreactive aromatase (24 hour time point only). Two hours post LPS, sickness-like behaviors increased, the transcription of IL-1β was higher in both sexes, and TNFα was elevated in females. 24 hours post-LPS, the behavior of LPS birds was similar to controls, and cytokines had returned to baseline, but aromatase mRNA and activity were elevated in both sexes. Immunocytochemistry revealed greater numbers of aromatase-expressing neurons in LPS birds. These data suggest that the activation of the immune system via peripheral endotoxin increases neuronal aromatase; a mechanism that may rapidly generate a potent anti-neuroinflammatory steroid in response to peripheral activation of the immune system.

“Activation of the peripheral immune system regulates neuronal aromatase in the adult zebra finch brain” by Alyssa L. Pedersen, Cassie J. Gould & Colin J. Saldanha in Scientific Reports. Published online August 31 2017 doi:10.1038/s41598-017-10573-x

Feel free to share this Neuroscience News.
Join our Newsletter
I agree to have my personal information transferred to AWeber for Neuroscience Newsletter ( more information )
Sign up to receive our recent neuroscience headlines and summaries sent to your email once a day, totally free.
We hate spam and only use your email to contact you about newsletters. You can cancel your subscription any time.