Decreased Deep Sleep Linked to Early Alzheimer’s Disease

Summary: A new study links poor sleep quality in older adults with elevated levels of tau, a protein associated with Alzheimer’s disease. Researchers report poor sleep quality later in life may be associated with declining brain health and may be an early indicator of Alzheimer’s disease.

Source: WUSTL.

Poor sleep is a hallmark of Alzheimer’s disease. People with the disease tend to wake up tired, and their nights become even less refreshing as memory loss and other symptoms worsen. But how and why restless nights are linked to Alzheimer’s disease is not fully understood.

Now, researchers at Washington University School of Medicine in St. Louis may have uncovered part of the explanation. They found that older people who have less slow-wave sleep – the deep sleep you need to consolidate memories and wake up feeling refreshed – have higher levels of the brain protein tau. Elevated tau is a sign of Alzheimer’s disease and has been linked to brain damage and cognitive decline.

The findings, published Jan. 9 in Science Translational Medicine, suggest that poor-quality sleep in later life could be a red flag for deteriorating brain health.

“What’s interesting is that we saw this inverse relationship between decreased slow-wave sleep and more tau protein in people who were either cognitively normal or very mildly impaired, meaning that reduced slow-wave activity may be a marker for the transition between normal and impaired,” said first author Brendan Lucey, MD, an assistant professor of neurology and director of the Washington University Sleep Medicine Center. “Measuring how people sleep may be a noninvasive way to screen for Alzheimer’s disease before or just as people begin to develop problems with memory and thinking.”

The brain changes that lead to Alzheimer’s, a disease that affects an estimated 5.7 million Americans, start slowly and silently. Up to two decades before the characteristic symptoms of memory loss and confusion appear, amyloid beta protein begins to collect into plaques in the brain. Tangles of tau appear later, followed by atrophy of key brain areas. Only then do people start showing unmistakable signs of cognitive decline.

The challenge is finding people on track to develop Alzheimer’s before such brain changes undermine their ability to think clearly. For that, sleep may be a handy marker.

To better understand the link between sleep and Alzheimer’s disease, Lucey, along with David Holtzman, MD, the Andrew B. and Gretchen P. Jones Professor and head of the Department of Neurology, and colleagues studied 119 people 60 years of age or older who were recruited through the Charles F. and Joanne Knight Alzheimer’s Disease Research Center. Most – 80 percent – were cognitively normal, and the remainder were very mildly impaired.

The researchers monitored the participants’ sleep at home over the course of a normal week. Participants were given a portable EEG monitor that strapped to their foreheads to measure their brain waves as they slept, as well as a wristwatch-like sensor that tracks body movement. They also kept sleep logs, where they made note of both nighttime sleep sessions and daytime napping. Each participant produced at least two nights of data; some had as many as six.

The researchers also measured levels of amyloid beta and tau in the brain and in the cerebrospinal fluid that bathes the brain and spinal cord. Thirty-eight people underwent PET brain scans for the two proteins, and 104 people underwent spinal taps to provide cerebrospinal fluid for analysis. Twenty-seven did both.

After controlling for factors such as sex, age and movements while sleeping, the researchers found that decreased slow-wave sleep coincided with higher levels of tau in the brain and a higher tau-to-amyloid ratio in the cerebrospinal fluid.

“The key is that it wasn’t the total amount of sleep that was linked to tau, it was the slow-wave sleep, which reflects quality of sleep,” Lucey said. “The people with increased tau pathology were actually sleeping more at night and napping more in the day, but they weren’t getting as good quality sleep.”

brain model
Reduced amounts of slow brain waves – the kind that occur in deep, refreshing sleep – are associated with high levels of the toxic brain protein tau. This computer-generated image maps the areas where the link is strongest, in shades of red and orange. A new study from Washington University School of Medicine in St. Louis has found that decreased deep sleep is associated with early signs of Alzheimer’s disease. NeuroscienceNews.com image is credited to Brendan Lucey.

If future research bears out their findings, sleep monitoring may be an easy and affordable way to screen earlier for Alzheimer’s disease, the researchers said. Daytime napping alone was significantly associated with high levels of tau, meaning that asking a simple question – How much do you nap during the day? – might help doctors identify people who could benefit from further testing.

“I don’t expect sleep monitoring to replace brain scans or cerebrospinal fluid analysis for identifying early signs of Alzheimer’s disease, but it could supplement them,” Lucey said. “It’s something that could be easily followed over time, and if someone’s sleep habits start changing, that could be a sign for doctors to take a closer look at what might be going on in their brains.”

About this neuroscience research article

Funding: Funding by National Institutes of Health, Ellison Medical Foundation, Willman Scholar Fund, Foundation for Barnes-Jewish Hospital, American Sleep Medicine Foundation.

Source: Diane Duke Williams – WUSTL
Publisher: Organized by NeuroscienceNews.com.
Image Source: NeuroscienceNews.com image is credited to Brendan Lucey.
Original Research: Open access research for “Reduced non–rapid eye movement sleep is associated with tau pathology in early Alzheimer’s disease” by Brendan P. Lucey, Austin McCullough, Eric C. Landsness, Cristina D. Toedebusch, Jennifer S. McLeland, Aiad M. Zaza, Anne M. Fagan, Lena McCue5, Chengjie Xiong, John C. Morris, Tammie L. S. Benzinger and David M. Holtzman in Science Translational Medicine. Published January 9 2019.
doi:10.1126/scitranslmed.aau6550

Cite This NeuroscienceNews.com Article

[cbtabs][cbtab title=”MLA”]WUSTL”Decreased Deep Sleep Linked to Early Alzheimer’s Disease.” NeuroscienceNews. NeuroscienceNews, 9 January 2019.
<https://neurosciencenews.com/deep-sleep-alzheimers-10477/>.[/cbtab][cbtab title=”APA”]WUSTL(2019, January 9). Decreased Deep Sleep Linked to Early Alzheimer’s Disease. NeuroscienceNews. Retrieved January 9, 2019 from https://neurosciencenews.com/deep-sleep-alzheimers-10477/[/cbtab][cbtab title=”Chicago”]WUSTL”Decreased Deep Sleep Linked to Early Alzheimer’s Disease.” https://neurosciencenews.com/deep-sleep-alzheimers-10477/ (accessed January 9, 2019).[/cbtab][/cbtabs]


Abstract

Reduced non–rapid eye movement sleep is associated with tau pathology in early Alzheimer’s disease

n Alzheimer’s disease (AD), deposition of insoluble amyloid-β (Aβ) is followed by intracellular aggregation of tau in the neocortex and subsequent neuronal cell loss, synaptic loss, brain atrophy, and cognitive impairment. By the time even the earliest clinical symptoms are detectable, Aβ accumulation is close to reaching its peak and neocortical tau pathology is frequently already present. The period in which AD pathology is accumulating in the absence of cognitive symptoms represents a clinically relevant time window for therapeutic intervention. Sleep is increasingly recognized as a potential marker for AD pathology and future risk of cognitive impairment. Previous studies in animal models and humans have associated decreased non–rapid eye movement (NREM) sleep slow wave activity (SWA) with Aβ deposition. In this study, we analyzed cognitive performance, brain imaging, and cerebrospinal fluid (CSF) AD biomarkers in participants enrolled in longitudinal studies of aging. In addition, we monitored their sleep using a single-channel electroencephalography (EEG) device worn on the forehead. After adjusting for multiple covariates such as age and sex, we found that NREM SWA showed an inverse relationship with AD pathology, particularly tauopathy, and that this association was most evident at the lowest frequencies of NREM SWA. Given that our study participants were predominantly cognitively normal, this suggested that changes in NREM SWA, especially at 1 to 2 Hz, might be able to discriminate tau pathology and cognitive impairment either before or at the earliest stages of symptomatic AD.

Feel free to share this Neuroscience News.
Join our Newsletter
I agree to have my personal information transferred to AWeber for Neuroscience Newsletter ( more information )
Sign up to receive our recent neuroscience headlines and summaries sent to your email once a day, totally free.
We hate spam and only use your email to contact you about newsletters. You can cancel your subscription any time.