New Neurons Reveal Clues About an Individual’s Autism

Summary: A new study unravels the mechanisms driving excess brain growth that affects as many as 30 percent of people with autism.

Source: Salk Institute.

The brains of some people with autism spectrum disorder grow faster than usual early on in life, often before diagnosis. A new study co-led by Salk Institute scientists has employed a cutting-edge stem cell technique to unravel the mechanisms driving the mysterious phenomenon of excess brain growth, which affects as many as 30 percent of people with autism..

The findings, published July 6, 2016 in the journal Molecular Psychiatry, show that it is possible to use stem cell reprogramming technologies developed in the past decade to model the earliest stages of complex disorders and to evaluate potential therapeutic drugs.

Intriguingly, the Salk team found that stem cell-derived neurons made fewer connections in the dish compared to cells from healthy individuals. Furthermore, the scientists were able to restore communication between the cells by adding IGF-1, a drug currently being evaluated in clinical trials of autism.

“This technology allows us to generate views of neuron development that have historically been intractable,” says senior investigator Rusty Gage, a professor in Salk’s Laboratory of Genetics and holder of the Vi and John Adler Chair for Research on Age-Related Neurodegenerative Diseases. “We’re excited by the possibility of using stem cell methods to unravel the biology of autism and to possibly screen for new drug treatments for this debilitating disorder.”

Autism, which affects approximately 1 out of every 68 children in the United States, is characterized by problems communicating, difficulties interacting with others, and in repetitive behaviors, although the symptoms range dramatically in type and severity. There is no known cause of autism.

In 2010, Gage, Carol Marchetto of Salk’s Laboratory of Genetics, Alysson Muotri of the University of California, San Diego, and their collaborators showed they could recreate features of Rett syndrome–a rare disorder that shares features of autism but is caused by mutations in a single gene–in a petri dish.

They did so by taking skin cells from patients, adding a mix of chemicals that instructed those cells to form stem cells, and in turn, coaxing their new stem cells into neurons. The ability to form what’s called induced pluripotent stem cells (iPSCs) from human cells was pioneered by researchers in 2007, but some scientists were initially skeptical that the new technology could lend insight into complex heritable disorders such as autism.

“In that study, induced pluripotent stem cells gave us a window into the birth of a neuron that we would not otherwise have,” says Marchetto, a senior staff scientist and the study’s first author. “Seeing features of Rett syndrome in a dish gave us the confidence to next study classical autism.”

In the new study, collaborating with Muotri and other scientists at UCSD once more, Gage’s team created stem cells from a subset of people with autism whose brains had grown up to 23 percent faster than usual during toddlerhood but had subsequently normalized.

A neuron.
Salk researchers have turned the skin cells of people with autism spectrum disorder into neurons. These cells show specific defects compared with those neurons derived from healthy people, including diminished ability to form excitatory connections with other neurons (indicated by red and green dots in the neuron). NeuroscienceNews.com image is credited to Salk Institute.

The neuron precursor cells derived from the patients multiplied faster than those of typically developing individuals. The finding supports a theory some experts have put forth that brain enlargement is caused by disruptions to the cell’s normal cycle of division, Marchetto says. In addition, the stem cell-derived neurons of individuals with autism behaved abnormally, bursting with activity less often compared with those cells of healthy people.

Those neurons’ activity seemed to improve by adding IGF-1, which is known to enhance the connections between neurons. The group plans to use the patient cells to investigate the molecular mechanisms behind IGF-1’s effects, in particular probing for changes in gene expression with treatment.

Although the newly derived cells are far from patients’ brains, a brain cell by itself may reveal important clues about a person, Marchetto says. “It never fails to amaze me when we can see similarities between the characteristics of the cells in the dish and the human disease,” she adds.

About this autism research article

Other authors on the study are Haim Belinson and Anthony Wynshaw-Boris of the University of California, San Francisco; Yuan Tian, Jing Ou, and Daniel Geschwind, of the University of California, Los Angeles; Beatriz Freitas, Patricia Beltrao-Braga, Cleber Trujillo, Eric Courchesne, Cynthia Barnes, Karen Pierce, Lawrence Eichenfield, Tiziano Pramparo and Lisa Eyler of the University of California San Diego; Chen Fu of Case Western Reserve University in Cleveland, Ohio; Krishna Vadodaria, Ana Mendes, Yanelli Nunez, Himanish Ghosh and Rebecca Wright of Salk; Krishnan Padmanabhan of University of Rochester School of Medicine and Dentistry in New York; and Kristen Brennand of Icahn School of Medicine at Mount Sinai in New York.

Funding: The research was supported by the California Institute for Regenerative Medicine, the National Institutes of Health, The International Rett Syndrome Foundation, a NARSAD Independent Investigator Award, a NIMH Autism Center of Excellence Program Project grant, The Leona M. and Harry B. Helmsley Charitable Trust, The JPB Foundation, the Robert and Mary Jane Engman Foundation, the CDMRP Autism Research Program, the University of California, San Diego Clinical and Translational Research Institute, and Autism Speaks.

Source: Salk Institute
Image Source: This NeuroscienceNews.com image is credited to Salk Institute.
Original Research: Abstract for “Altered proliferation and networks in neural cells derived from idiopathic autistic individuals” by M C Marchetto, H Belinson, Y Tian, B C Freitas, C Fu, K C Vadodaria, P C Beltrao-Braga, C A Trujillo, A P D Mendes, K Padmanabhan, Y Nunez, J Ou, H Ghosh, R Wright, K J Brennand, K Pierce, L Eichenfield, T Pramparo, L T Eyler, C C Barnes, E Courchesne, D H Geschwind, F H Gage, A Wynshaw-Boris and A R Muotri in Molecular Psychiatry. Published online July 5 2016 doi:10.1038/mp.2016.95

Cite This NeuroscienceNews.com Article

[cbtabs][cbtab title=”MLA”]Salk Institute. “New Neurons Reveal Clues About an Individual’s Autism.” NeuroscienceNews. NeuroscienceNews, 7 July 2016.
<https://neurosciencenews.com/autism-neurogenesis-neuroscience-4642/>.[/cbtab][cbtab title=”APA”]Salk Institute. (2016, July 7). New Neurons Reveal Clues About an Individual’s Autism. NeuroscienceNew. Retrieved July 7, 2016 from https://neurosciencenews.com/autism-neurogenesis-neuroscience-4642/[/cbtab][cbtab title=”Chicago”]Salk Institute. “New Neurons Reveal Clues About an Individual’s Autism.” https://neurosciencenews.com/autism-neurogenesis-neuroscience-4642/ (accessed July 7, 2016).[/cbtab][/cbtabs]


Abstract

Altered proliferation and networks in neural cells derived from idiopathic autistic individuals

Autism spectrum disorders (ASD) are common, complex and heterogeneous neurodevelopmental disorders. Cellular and molecular mechanisms responsible for ASD pathogenesis have been proposed based on genetic studies, brain pathology and imaging, but a major impediment to testing ASD hypotheses is the lack of human cell models. Here, we reprogrammed fibroblasts to generate induced pluripotent stem cells, neural progenitor cells (NPCs) and neurons from ASD individuals with early brain overgrowth and non-ASD controls with normal brain size. ASD-derived NPCs display increased cell proliferation because of dysregulation of a β-catenin/BRN2 transcriptional cascade. ASD-derived neurons display abnormal neurogenesis and reduced synaptogenesis leading to functional defects in neuronal networks. Interestingly, defects in neuronal networks could be rescued by insulin growth factor 1 (IGF-1), a drug that is currently in clinical trials for ASD. This work demonstrates that selection of ASD subjects based on endophenotypes unraveled biologically relevant pathway disruption and revealed a potential cellular mechanism for the therapeutic effect of IGF-1.

“Altered proliferation and networks in neural cells derived from idiopathic autistic individuals” by M C Marchetto, H Belinson, Y Tian, B C Freitas, C Fu, K C Vadodaria, P C Beltrao-Braga, C A Trujillo, A P D Mendes, K Padmanabhan, Y Nunez, J Ou, H Ghosh, R Wright, K J Brennand, K Pierce, L Eichenfield, T Pramparo, L T Eyler, C C Barnes, E Courchesne, D H Geschwind, F H Gage, A Wynshaw-Boris and A R Muotri in Molecular Psychiatry. Published online July 5 2016 doi:10.1038/mp.2016.95

Feel free to share this Neuroscience News.
Join our Newsletter
I agree to have my personal information transferred to AWeber for Neuroscience Newsletter ( more information )
Sign up to receive our recent neuroscience headlines and summaries sent to your email once a day, totally free.
We hate spam and only use your email to contact you about newsletters. You can cancel your subscription any time.