Elevating Brain Protein Allays Symptoms of Alzheimer’s and Improves Memory

Summary: A new study reports that boosting levels of a specific brain protein alleviates the hallmark features of Alzheimer’s in a mouse model of the disease.

Source: Salk Institute.

Boosting levels of a specific protein in the brain alleviates hallmark features of Alzheimer’s disease in a mouse model of the disorder, according to new research published online August 25, 2016 in Scientific Reports.

The protein, called neuregulin-1, has many forms and functions across the brain and is already a potential target for brain disorders such as Parkinson’s disease, amyotrophic lateral sclerosis and schizophrenia.

“Neuregulin-1 has broad therapeutic potential, but mechanistically, we are still learning about how it works,” says the study’s senior investigator Kuo-Fen Lee, a professor in the Salk Institute’s Clayton Foundation Laboratories for Peptide Biology and holder of the Helen McLoraine Chair in Molecular Neurobiology. “We’ve shown that it promotes metabolism of the brain plaques that are characteristic of Alzheimer’s disease.”

Previously, researchers have shown that treating cells with neuregulin-1, for example, dampens levels of amyloid precursor protein, a molecule that generates amyloid beta, which aggregate and form plaques in the brains of Alzheimer’s patients. Other studies suggest that neuregulin-1 could protect neurons from damage caused by blockage of blood flow.

In the new study, Lee’s team tested this idea in a mouse model of Alzheimer’s disease by raising the levels of one of two forms of neuregulin-1 in the hippocampus, an area of the brain responsible for learning and memory. Both forms of the protein seemed to improve performance on a test of spatial memory in the models.

What’s more, the levels of cellular markers of disease–including the levels of amyloid beta and plaques–were noticeably lower in mice with more neuregulin-1 compared to controls.

The group’s experiments suggest that neuregulin-1 breaks up plaques by raising levels of an enzyme called neprilysin, shown to degrade amyloid-beta. But that is probably not the only route through which neuregulin-1 confers its benefits, and the group is exploring other possible mechanisms–such as whether the protein improves signaling between neurons, which is impaired in Alzheimer’s–says the study’s first author Jiqing Xu, a research associate in Lee’s group.

A neuregulin-1 treatment is not available on the market, though it is being explored in clinical trials as a potential treatment for chronic heart failure and Parkinson’s disease. One advantage of neuregulin-1 as a potential drug is that it can cross the blood brain barrier, which means that it could be administered relatively noninvasively even though the efficiency is not clear. On the other hand, other research suggests too much of the protein impairs brain function. Working with chemists at Salk, Lee’s team has come up with a small molecule that can raise levels of existing neuregulin-1 (rather than administering it directly) and are testing it in cells. This alternative therapy could be a better way to prevent plaques from forming because small molecules more readily cross the blood brain barrier.

Image shows a brain slice of alzheimer's disease.
In a mouse model of Alzheimer’s disease, Salk Institute researchers show that raising levels of neuregulin-1 (right) lowers a marker of disease pathology in a part of the brain that controls memory compared with controls (left). NeuroscienceNews.com image credited to Salk Institute.

The group is also interested in neuregulin-1 for its ties to schizophrenia. An alteration in the neuregulin-1 gene–a single change in one letter of the DNA code for the protein–has been found in families with schizophrenia and linked to late-onset Alzheimer’s disease with psychosis. The protein may be a way to understand the overlap between Alzheimer’s and other brain disorders, Lee says.

An important caveat is that the new research was conducted in a single type of mouse model of Alzheimer’s. Lee’s group is testing neuregulin-1′s affects across other models. “There’s much more work ahead before neuregulin-1 could become a treatment, but we are excited about its potential, possibly in combination with other therapeutics for Alzheimer’s disease,” Lee says.

About this Alzheimer’s disease research article

Other authors on the study are Fred DeWinter, Catherine Farrokhi, Jonathan Cook and Xin Jin of Salk’s Clayton Foundation for Peptide Biology Laboratories; and Edward Rockenstein, Michael Mante, Anthony Adame and Eliezer Masliah of the University of California, San Diego.

Funding: The research was supported by the National Institutes of Health, the Clayton Foundation, The Albert G. and Olive H. Schlink Foundation, the Gemcon Family Foundation and the Brown Foundation.

Source: Salk Institute
Image Source: This NeuroscienceNews.com image is credited to Salk Institute.
Original Research: Full open access research for “Neuregulin 1 improves cognitive deficits and neuropathology in an Alzheimer’s disease modele” by Jiqing Xu, Fred de Winter, Catherine Farrokhi, Edward Rockenstein, Michael Mante, Anthony Adame, Jonathan Cook, Xin Jin, Eliezer Masliah and Kuo-Fen Lee in Scientific Reports. Published online August 25 2016 doi:10.1038/srep31692

Cite This NeuroscienceNews.com Article

[cbtabs][cbtab title=”MLA”]Salk Institute. “Elevating Brain Protein Allays Symptoms of Alzheimer’s and Improves Memory.” NeuroscienceNews. NeuroscienceNews, 26 August 2016.
<https://neurosciencenews.com/alzheimers-protein-memory-4912/>.[/cbtab][cbtab title=”APA”]Salk Institute. (2016, August 26). Elevating Brain Protein Allays Symptoms of Alzheimer’s and Improves Memory. NeuroscienceNews. Retrieved August 26, 2016 from https://neurosciencenews.com/alzheimers-protein-memory-4912/[/cbtab][cbtab title=”Chicago”]Salk Institute. “Elevating Brain Protein Allays Symptoms of Alzheimer’s and Improves Memory.” https://neurosciencenews.com/alzheimers-protein-memory-4912/ (accessed August 26, 2016).[/cbtab][/cbtabs]


Abstract

Neuregulin 1 improves cognitive deficits and neuropathology in an Alzheimer’s disease model

Several lines of evidence suggest that neuregulin 1 (NRG1) signaling may influence cognitive function and neuropathology in Alzheimer’s disease (AD). To test this possibility, full-length type I or type III NRG1 was overexpressed via lentiviral vectors in the hippocampus of line 41 AD mouse. Both type I and type III NRG1 improves deficits in the Morris water-maze behavioral task. Neuropathology was also significantly ameliorated. Decreased expression of the neuronal marker MAP2 and synaptic markers PSD95 and synaptophysin in AD mice was significantly reversed. Levels of Aβ peptides and plaques were markedly reduced. Furthermore, we showed that soluble ectodomains of both type I and type III NRG1 significantly increased expression of Aβ-degrading enzyme neprilysin (NEP) in primary neuronal cultures. Consistent with this finding, immunoreactivity of NEP was increased in the hippocampus of AD mice. These results suggest that NRG1 provides beneficial effects in candidate neuropathologic substrates of AD and, therefore, is a potential target for the treatment of AD.

“Neuregulin 1 improves cognitive deficits and neuropathology in an Alzheimer’s disease modele” by Jiqing Xu, Fred de Winter, Catherine Farrokhi, Edward Rockenstein, Michael Mante, Anthony Adame, Jonathan Cook, Xin Jin, Eliezer Masliah and Kuo-Fen Lee in Scientific Reports. Published online August 25 2016 doi:10.1038/srep31692

Feel free to share this Neuroscience News.
Join our Newsletter
I agree to have my personal information transferred to AWeber for Neuroscience Newsletter ( more information )
Sign up to receive our recent neuroscience headlines and summaries sent to your email once a day, totally free.
We hate spam and only use your email to contact you about newsletters. You can cancel your subscription any time.