Image shows a close up look at a synapse.
The brain hosts an extraordinarily complex network of interconnected nerve cells that are constantly exchanging electrical and chemical signals at speeds difficult to comprehend. Now, scientists at Washington University School of Medicine in St. Louis report they have been able to achieve -- with a custom-built microscope -- the closest view yet of living nerve synapses. Nerve synapses are the junctions between neurons that govern how these cells communicate. The researchers have been able to achieve even closer looks than shown, however this image shows multiple working nerve synapses. NeuroscienceNews.com image is credited to Dario Maschi.

A Closer Look at a Living Nerve Synapse

Summary: A new, custom built microscope allows neuroscientists a closer look at the detailed workings of a synapse.

Source: WUSTL.

Custom-built microscope reveals details of how neurons communicate.

The brain hosts an extraordinarily complex network of interconnected nerve cells that are constantly exchanging electrical and chemical signals at speeds difficult to comprehend. Now, scientists at Washington University School of Medicine in St. Louis report they have been able to achieve — with a custom-built microscope — the closest view yet of living nerve synapses.

Understanding the detailed workings of a synapse — the junction between neurons that govern how these cells communicate with each other — is vital for modeling brain networks and understanding how diseases as diverse as depression, Alzheimer’s or schizophrenia may affect brain function, according to the researchers.

The study is published March 23 in the journal Neuron.

Studying active rat neurons, even those growing in a dish, is a challenge because they are so small. Further, they move, making it difficult to keep them in focus at high magnifications under a light microscope.

“Synapses are little nanoscale machines that transmit information,” said senior author Vitaly A. Klyachko, PhD, an associate professor of cell biology and physiology at the School of Medicine. “They’re very difficult to study because their scale is below what conventional light microscopes can resolve. So what is happening in the active zone of a synapse looks like a blur.

“To remedy this, our custom-built microscope has a very sensitive camera and is extremely stable at body temperatures, but most of the novelty comes from the analysis of the images,” he added. “Our approach gives us the ability to resolve events in the synapse with high precision.”

Until now, close-up views of the active zone have been provided by electron microscopes. While offering resolutions of mere tens of nanometers — about 1,000 times thinner than a human hair and smaller — electron microscopes can’t view living cells. To withstand bombardment by electrons, samples must be fixed in an epoxy resin or flash frozen, cut into extremely thin slices and coated in a layer of metal atoms.

“Most of what we know about the active zone is from indirect studies, including beautiful electron microscopy images,” said Klyachko, also an associate professor of biomedical engineering at the School of Engineering & Applied Science. “But these are static pictures. We wanted to develop a way to see the synapse function.”

A synapse consists of a tiny gap between two nerves, with one nerve serving as the transmitter and the other as the receiver. When sending signals, the transmitting side of the synapse releases little packages of neurotransmitters, which traverse the gap and bind to receptors on the receiving side, completing the information relay. On the transmitting side of the synapse the neurotransmitters at the active zone are packaged into synaptic vesicles.

“One of the most fundamental questions is: Are there many places at the active zone where a vesicle can release its neurotransmitters into the gap, or is there only one?” Klyachko said. “A lot of indirect measurements suggested there might be only one, or maybe two to three, at most.”

In other words, if the active zone could be compared to a shower head, the question would be whether it functions more as a single jet or as a rain shower.

Image shows a close up look at a synapse.
The brain hosts an extraordinarily complex network of interconnected nerve cells that are constantly exchanging electrical and chemical signals at speeds difficult to comprehend. Now, scientists at Washington University School of Medicine in St. Louis report they have been able to achieve — with a custom-built microscope — the closest view yet of living nerve synapses. Nerve synapses are the junctions between neurons that govern how these cells communicate. The researchers have been able to achieve even closer looks than shown, however this image shows multiple working nerve synapses. NeuroscienceNews.com image is credited to Dario Maschi.

Klyachko and first author Dario Maschi, PhD, a postdoctoral researcher, showed that the active zone is more of a rain shower. But it’s not a random shower; there are about 10 locations dotted across the active zone that are reused too often to be left to chance. They also found there is a limit to how quickly these sites can be reused — about 100 milliseconds must pass before an individual site can be used again. And at higher rates of vesicle release, the site usage tends to move from the center to the periphery of the active zone.

“Neurons often fire at 50 to 100 times per second, so it makes sense to have multiple sites,” Klyachko said. “If one site has just been used, the active zone can still be transmitting signals through its other sites.

“We’re studying the most basic machinery of the brain,” he added. “Our data suggest these machines are extremely fine-tuned — even subtle modulations may lead to disease. But before we can study disease, we need to understand how healthy synapses work.”

About this neuroscience research article

Funding: This work was supported in part by the Esther A. & Joseph Klingenstein Fund, the Whitehall Foundation and the McDonnell Center at Washington University.

Source: Julia Evangelou Strait – WUSTL
Image Source: NeuroscienceNews.com image is credited to Dario Maschi.
Original Research: Abstract for “Spatiotemporal Regulation of Synaptic Vesicle Fusion Sites in Central Synapses” by Dario Maschi, Vitaly A. Klyachko in Neuron. Published online March 23 2017 doi:http://dx.doi.org/10.1016/j.neuron.2017.03.006

Cite This NeuroscienceNews.com Article

[cbtabs][cbtab title=”MLA”]WUSTL “A Closer Look at a Living Nerve Synapse.” NeuroscienceNews. NeuroscienceNews, 24 March 2017.
<https://neurosciencenews.com/synapse-microscopy-6289/>.[/cbtab][cbtab title=”APA”]WUSTL (2017, March 24). A Closer Look at a Living Nerve Synapse. NeuroscienceNew. Retrieved March 24, 2017 from https://neurosciencenews.com/synapse-microscopy-6289/[/cbtab][cbtab title=”Chicago”]WUSTL “A Closer Look at a Living Nerve Synapse.” https://neurosciencenews.com/synapse-microscopy-6289/ (accessed March 24, 2017).[/cbtab][/cbtabs]


Abstract

Spatiotemporal Regulation of Synaptic Vesicle Fusion Sites in Central Synapses

Highlights
•Individual release events are detected with ∼27 nm precision in hippocampal synapses
•Multiple distinct release sites are present within individual hippocampal synapses
•Spatiotemporal properties of release sites are modulated in an activity-dependent manner

Summary
The number and availability of vesicle release sites at the synaptic active zone (AZ) are critical factors governing neurotransmitter release; yet, these fundamental synaptic parameters have remained undetermined. Moreover, how neural activity regulates the spatiotemporal properties of the release sites within individual central synapses is unknown. Here, we combined a nanoscale imaging approach with advanced image analysis to detect individual vesicle fusion events with ∼27 nm localization precision at single hippocampal synapses under physiological conditions. Our results revealed the presence of multiple distinct release sites within individual hippocampal synapses. Release sites were distributed throughout the AZ and underwent repeated reuse. Furthermore, the spatiotemporal properties of the release sites were activity dependent with a reduction in reuse frequency and a shift in location toward the AZ periphery during high-frequency stimulation. These findings have revealed fundamental spatiotemporal properties of individual release sites in small central synapses and their activity-dependent modulation.

“Spatiotemporal Regulation of Synaptic Vesicle Fusion Sites in Central Synapses” by Dario Maschi, Vitaly A. Klyachko in Neuron. Published online March 23 2017 doi:http://dx.doi.org/10.1016/j.neuron.2017.03.006

Feel free to share this Neuroscience News.
Join our Newsletter
I agree to have my personal information transferred to AWeber for Neuroscience Newsletter ( more information )
Sign up to receive our recent neuroscience headlines and summaries sent to your email once a day, totally free.
We hate spam and only use your email to contact you about newsletters. You can cancel your subscription any time.