Breakthrough in Mapping Nicotine Addiction Could Help Improve Treatment

Summary: Researchers have crystallized a protein that could hold the answer as to how nicotine addiction occurs in the brain.

Source: UT Southwestern Medical Center.

A scientific blueprint to end tobacco cravings may be on the way after researchers crystallized a protein that holds answers to how nicotine addiction occurs in the brain.

The breakthrough at the Peter O’Donnell Jr. Brain Institute comes after decades of failed attempts to crystallize and determine the 3D structure of a protein that scientists expect will help them develop new treatments by understanding nicotine’s molecular effects.

“It’s going to require a huge team of people and a pharmaceutical company to study the protein and develop the drugs, but I think this is the first major stepping stone to making that happen,” said Dr. Ryan Hibbs, Assistant Professor of Neuroscience and Biophysics with the O’Donnell Brain Institute at UT Southwestern Medical Center, who co-authored the findings published in Nature.

Image shows a nicotine receptor.
Researchers at the Peter O’Donnell Jr. Brain Institute developed this illustration of the nicotinic receptor based on a structure determined by X-ray crystallography. The ability to grow crystals of the receptor after decades of research is a breakthrough that scientists expect will help them develop new treatments by understanding nicotine’s molecular effects. NeuroscienceNews.com image is credited to Hibbs Lab, UT Southwestern Medical Center.

The protein, called the α4β2 (alpha-4-beta-2) nicotinic receptor, sits on nerve cells in the brain. Nicotine binds to the receptor when someone smokes a cigarette or chews tobacco, causing the protein to open a path for ions to enter the cell. The process produces cognitive benefits such as increased memory and focus but is also highly addictive.

Until the new findings were generated, scientists didn’t have a way to examine at atomic resolution how nicotine achieves these cognitive and addictive effects.

Who will benefit?

The expectation is that the 3D structures will help researchers understand how nicotine influences the activity of the receptor and lead to a medication that mimics its actions in the brain.

The finding may also have benefits in creating medications for certain types of epilepsy, mental illness, and dementia such as Alzheimer’s, which are also associated with the nicotinic receptor. However, Dr. Hibbs cautioned that testing of any ensuing treatment would likely take many years.

Studies have shown smoking cessation drugs have mixed results in treating nicotine addiction, as have other methods such as nicotine patches and chewing gum.

“I just cannot quit smoking,” said Tom Loveless of Dallas, who has tried many times to kick his cigarette habit after becoming addicted 40 years ago while in the Air Force.

He found the study’s findings encouraging and hopes one day scientists can find a way to beat nicotine addiction. “I hate what it does to me,” said Mr. Loveless, a retired 65-year-old grandfather. “I hate the expense. I hate the odor. It upsets my wife. It isn’t worth it.”

Motivating Factors

Despite widespread education on the dangers of tobacco use, it still causes nearly 6 million deaths per year worldwide, with smoking the leading cause of preventable death, according to the U.S. Centers for Disease Control and Prevention. Cigarettes alone account for 1 in 5 deaths annually in the U.S.

Those statistics are among the motivating factors for Dr. Hibbs, whose laboratory team began researching how to determine the structure of the receptor in 2012.

The receptor is “a critically important therapeutic target” for addiction and various mental and neurological disorders, said Dr. Joseph Takahashi, Chairman of Neuroscience and Investigator for the Howard Hughes Medical Institute.

“This is a major advance and solves a longstanding problem in crystallizing” the nicotinic receptor, said Dr. Takahashi, who holds the Loyd B. Sands Distinguished Chair in Neuroscience.

How they did it

For years scientists around the globe had concentrated efforts on the receptor found in the electric organ of a torpedo ray, a rich source of nicotinic receptors that yielded a wealth of biochemical information and held promise for obtaining a high-resolution atomic map of the protein.

“But they were never able to get the torpedo protein to crystalize,” Dr. Hibbs said, explaining that the protein from the ray proved too unstable and couldn’t be genetically modified. “Many very good research groups had tried to do this and failed. We took a different approach.”

Instead, UT Southwestern researchers developed a method for mass producing nicotinic receptors by viral infection of a human cell line. The team inserted genes encoding the proteins that make the receptor into the virus, and the infected human cells started producing large amounts of the receptor.

They then used detergent and other purification steps to separate the receptor from the cell membrane and wash away all other proteins. Researchers were left with milligrams of the pure receptor that they mixed with chemicals known to promote crystallization.

The team looked at thousands of chemical combinations before eventually being able to grow crystals of the receptor, bound by nicotine and about 0.2 mm long. Lastly, they used X-ray diffraction measurements to obtain a high-resolution structure of the receptor.

The team’s next steps involve determining structures in the absence of nicotine, and in the presence of molecules with different functional effects. Comparisons between structures will allow them to understand better what nicotine does, and how its actions are distinct from those of other chemicals, said Dr. Hibbs, Effie Marie Cain Scholar in Medical Research.

About this neuroscience research article

Funding: This work was supported by the National Institutes of Health, HHMI Gilliam Fellowship, Welch Foundation, Friends of the Alzheimer’s Disease Center, and others.

Source: James Beltran – UT Southwestern Medical Center
Image Source: This NeuroscienceNews.com image is credited to Hibbs Lab, UT Southwestern Medical Center.
Original Research: Abstract for “X-ray structure of the human α4β2 nicotinic receptor” by Claudio L. Morales-Perez, Colleen M. Noviello and Ryan E. Hibbs in Nature. Published online October 3 2016 doi:10.1038/nature19785

Cite This NeuroscienceNews.com Article

[cbtabs][cbtab title=”MLA”]UT Southwestern Medical Center. “Breakthrough in Mapping Nicotine Addiction Could Help Improve Treatment.” NeuroscienceNews. NeuroscienceNews, 3 October 2016.
<https://neurosciencenews.com/nicotine-addiction-mapping-5184/>.[/cbtab][cbtab title=”APA”]UT Southwestern Medical Center. (2016, October 3). Breakthrough in Mapping Nicotine Addiction Could Help Improve Treatment. NeuroscienceNews. Retrieved October 3, 2016 from https://neurosciencenews.com/nicotine-addiction-mapping-5184/[/cbtab][cbtab title=”Chicago”]UT Southwestern Medical Center. “Breakthrough in Mapping Nicotine Addiction Could Help Improve Treatment.” https://neurosciencenews.com/nicotine-addiction-mapping-5184/ (accessed October 3, 2016).[/cbtab][/cbtabs]


Abstract

X-ray structure of the human α4β2 nicotinic receptor

Nicotinic acetylcholine receptors are ligand-gated ion channels that mediate fast chemical neurotransmission at the neuromuscular junction and have diverse signalling roles in the central nervous system. The nicotinic receptor has been a model system for cell-surface receptors, and specifically for ligand-gated ion channels, for well over a century. In addition to the receptors’ prominent roles in the development of the fields of pharmacology and neurobiology, nicotinic receptors are important therapeutic targets for neuromuscular disease, addiction, epilepsy and for neuromuscular blocking agents used during surgery. The overall architecture of the receptor was described in landmark studies of the nicotinic receptor isolated from the electric organ of Torpedo marmorata5. Structures of a soluble ligand-binding domain have provided atomic-scale insights into receptor–ligand interactions, while high-resolution structures of other members of the pentameric receptor superfamily provide touchstones for an emerging allosteric gating mechanism7. All available high-resolution structures are of homopentameric receptors. However, the vast majority of pentameric receptors (called Cys-loop receptors in eukaryotes) present physiologically are heteromeric. Here we present the X-ray crystallographic structure of the human α4β2 nicotinic receptor, the most abundant nicotinic subtype in the brain. This structure provides insights into the architectural principles governing ligand recognition, heteromer assembly, ion permeation and desensitization in this prototypical receptor class.

“X-ray structure of the human α4β2 nicotinic receptor” by Claudio L. Morales-Perez, Colleen M. Noviello and Ryan E. Hibbs in Nature. Published online October 3 2016 doi:10.1038/nature19785

Feel free to share this Neuroscience News.
Join our Newsletter
I agree to have my personal information transferred to AWeber for Neuroscience Newsletter ( more information )
Sign up to receive our recent neuroscience headlines and summaries sent to your email once a day, totally free.
We hate spam and only use your email to contact you about newsletters. You can cancel your subscription any time.