A password will be e-mailed to you.

Amputees Can Learn to Control a Robotic Arm with Their Minds

Summary: Researchers report amputees are able to control a robotic arm with help of brain implants and BMI technology. The study details how brain areas that control both the intact arm and amputated limb can create new connections and learn to control the robotic arm, even years following the loss of a limb.

Source: University of Chicago Medical Center.

A new study by neuroscientists at the University of Chicago shows how amputees can learn to control a robotic arm through electrodes implanted in the brain.

The research, published in Nature Communications, details changes that take place in both sides of the brain used to control the amputated limb and the remaining, intact limb. The results show both areas can create new connections to learn how to control the device, even several years after an amputation.

“That’s the novel aspect to this study, seeing that chronic, long-term amputees can learn to control a robotic limb,” said Nicho Hatsopoulos, PhD, professor of organismal biology and anatomy at UChicago and senior author of the study. “But what was also interesting was the brain’s plasticity over long-term exposure, and seeing what happened to the connectivity of the network as they learned to control the device.”

Previous experiments have shown how paralyzed human patients can move robotic limbs through a brain machine interface. The new study is one of the first to test the viability of these devices in amputees as well.

The researchers worked with three rhesus monkeys who suffered injuries at a young age and had to have an arm amputated to rescue them four, nine and 10 years ago, respectively. Their limbs were not amputated for the purposes of the study. In two of the animals, the researchers implanted electrode arrays in the side of the brain opposite, or contralateral, to the amputated limb. This is the side that used to control the amputated limb. In the third animal, the electrodes were implanted on the same side, or ipsilateral, to the amputated limb. This is the side that still controlled the intact limb.

The monkeys were then trained (with generous helpings of juice) to move a robotic arm and grasp a ball using only their thoughts. The scientists recorded the activity of neurons where the electrodes were placed, and used a statistical model to calculate how the neurons were connected to each other before the experiments, during training and once the monkeys mastered the activity.

The connections between neurons on the contralateral side—the side that had been controlling the amputated arm—were sparse before the training, most likely because they had not been used for that function in a long time. But as training progressed, these connections became more robust and dense in areas used for both reaching and grasping.

Image shows the robotic arm grasping a ball.

Monkeys were trained to use their thoughts to move a robotic arm and grasp a ball NeuroscienceNews.com image is credited to Nicho Hatsopoulos, Karthikeyan Balasubramanian.

On the ipsilateral side—the side that had been controlling the monkey’s intact arm—the connections were dense at the beginning of the experiments. But the researchers saw something interesting as training progressed: first the connections were pruned and the networks thinned, before rebuilding into a new, dense network.

“That means connections were shedding off as the animal was trying to learn a new task, because there is already a network controlling some other behavior,” said Karthikeyan Balasubramanian, PhD, a postdoctoral researcher who led the study. “But after a few days it started rebuilding into a new network that can control both the intact limb and the neuroprosthetic.”

Now the team plans to continue their work by combining it with research by other groups to equip neuroprosthetic limbs with sensory feedback about touch and proprioception, which is the sense of where the limb is located in space.

“That’s how we can begin to create truly responsive neuroprosthetic limbs, when people can both move it and get natural sensations through the brain machine interface,” Hatsopoulos said.

About this neuroscience research article

Source: Matt Wood – University of Chicago Medical Center
Publisher: Organized by NeuroscienceNews.com.
Image Source: NeuroscienceNews.com image is credited to Nicho Hatsopoulos, Karthikeyan Balasubramanian.
Original Research: Full open access research for “Changes in cortical network connectivity with long-term brain-machine interface exposure after chronic amputation” by Karthikeyan Balasubramanian, Mukta Vaidya, Joshua Southerland, Islam Badreldin, Ahmed Eleryan, Kazutaka Takahashi, Kai Qian, Marc W. Slutzky, Andrew H. Fagg, Karim Oweiss & Nicholas G. Hatsopoulos in Nature Communications. Published online November 27 2017 doi:10.1038/s41467-017-01909-2

Cite This NeuroscienceNews.com Article
University of Chicago Medical Center “Amputees Can Learn to Control a Robotic Arm with Their Minds.” NeuroscienceNews. NeuroscienceNews, 27 November 2017.
<http://neurosciencenews.com/neuroprosthetics-robotic-arm-brain-control-8038/>.
University of Chicago Medical Center (2017, November 27). Amputees Can Learn to Control a Robotic Arm with Their Minds. NeuroscienceNews. Retrieved November 27, 2017 from http://neurosciencenews.com/neuroprosthetics-robotic-arm-brain-control-8038/
University of Chicago Medical Center “Amputees Can Learn to Control a Robotic Arm with Their Minds.” http://neurosciencenews.com/neuroprosthetics-robotic-arm-brain-control-8038/ (accessed November 27, 2017).

Abstract

Changes in cortical network connectivity with long-term brain-machine interface exposure after chronic amputation

Studies on neural plasticity associated with brain–machine interface (BMI) exposure have primarily documented changes in single neuron activity, and largely in intact subjects. Here, we demonstrate significant changes in ensemble-level functional connectivity among primary motor cortical (MI) neurons of chronically amputated monkeys exposed to control a multiple-degree-of-freedom robot arm. A multi-electrode array was implanted in M1 contralateral or ipsilateral to the amputation in three animals. Two clusters of stably recorded neurons were arbitrarily assigned to control reach and grasp movements, respectively. With exposure, network density increased in a nearly monotonic fashion in the contralateral monkeys, whereas the ipsilateral monkey pruned the existing network before re-forming a denser connectivity. Excitatory connections among neurons within a cluster were denser, whereas inhibitory connections were denser among neurons across the two clusters. These results indicate that cortical network connectivity can be modified with BMI learning, even among neurons that have been chronically de-efferented and de-afferented due to amputation.

“Changes in cortical network connectivity with long-term brain-machine interface exposure after chronic amputation” by Karthikeyan Balasubramanian, Mukta Vaidya, Joshua Southerland, Islam Badreldin, Ahmed Eleryan, Kazutaka Takahashi, Kai Qian, Marc W. Slutzky, Andrew H. Fagg, Karim Oweiss & Nicholas G. Hatsopoulos in Nature Communications. Published online November 27 2017 doi:10.1038/s41467-017-01909-2

Feel free to share this Neuroscience News.
Join our Newsletter
Sign up to receive the latest neuroscience headlines and summaries sent to your email daily from NeuroscienceNews.com
We hate spam. Your email address will not be sold or shared with anyone else.
No more articles