Neuronal Plasticity and the Changing Seasons

A team of scientists has linked changes in the structure of a handful of central brain neurons to understanding how animals adjust to changing seasons. Its findings enhance our understanding of the mechanisms vital to the regulation of our circadian system, or internal clock.

The work, which appears in the journal Cell, focuses on the regulation of “neuronal plasticity”—changes in neuronal structure—and its function in the brain.

“Neuronal plasticity underpins learning and memory, but it is very challenging to tie changes in specific neurons to alterations in animal behavior,” explains Justin Blau, the paper’s senior author and a professor in NYU’s Department of Biology and at NYU Abu Dhabi. “In our research, we’ve discovered how plasticity of a very small number of neurons helps run the biological clock and aids transitions to different seasons.”

The paper’s other authors were Afroditi Petsakou, a recent PhD graduate from NYU’s Department of Biology, and Themistoklis Sapsis, an assistant professor at MIT.

This image shows trees in different seasons.
The findings may also shed new light on a human affliction, spinocerebellar ataxia—a neurodegenerative disease that affects coordination and movement. The image is for illustrative purposes only.

In their study, the researchers focused on the principal s-LNv clock neurons in the fruit fly Drosophila, which is commonly used for research on circadian rhythms—earlier studies of “clock genes” in fruit flies lead to the identification of similarly functioning genes in humans.

Specifically, their work centered on the ends/tips of the axons of these neurons, where they release their signals. Previous research had established that these termini change their structure with a 24-hour rhythm, but it was unclear what function these alterations served.

In the Cell study, the scientists quantified the daily changes in s-LNv axon termini and found that they grow and retract every 24 hours. They also identified the protein that drives these rhythms in neuronal plasticity: Rho1. Moreover, they found that plasticity of the s-LNvs is required both for maintaining circadian rhythms (the biological clock) and for allowing seasonal adaptation of these rhythms. Specifically, if s-LNvs are unable to retract then flies behave normally in winter but fail to predict the early dawn of long summer days. Conversely, if s-LNvs remain in a retracted state, then flies behave as if they are in summer on both short and long days.

They also found rhythms in the proteins at the ends of the s-LNv axons. At dawn, s-LNvs have high levels of proteins involved in sending signals and low levels of the proteins that allow them to receive signals. The opposite is true at dusk. This unusual type of neuronal plasticity suggests that the function of s-LNvs changes dramatically over the day: from mainly sending signals at dawn to mainly receiving signals at dusk.

The findings may also shed new light on a human affliction, spinocerebellar ataxia—a neurodegenerative disease that affects coordination and movement. Blau’s group found that the daily changes in Rho1 activity are controlled by rhythms in transcription of a gene very similar to human Puratrophin-1.

“Since some forms of spinocerebellar ataxia are associated with mutations in human Puratrophin-1, our data support the idea that defective neuronal plasticity underlies loss of motor control and leads to neurodegeneration,” notes Blau.

About this neuroscience research

Funding: The research was supported by grants from the National Institutes of Health (GM063911, NS077156 and C06 RR-15518-01).

Source: James Devitt – New York University
Image Credit: The image is in the public domain
Original Research: Abstract for “Circadian Rhythms in Rho1 Activity Regulate Neuronal Plasticity and Network Hierarchy” by Afroditi Petsakou, Themistoklis P. Sapsis, and Justin Blau in Cell. Published online July 30 2015 doi:10.1016/j.cell.2015.07.010


Abstract

Circadian Rhythms in Rho1 Activity Regulate Neuronal Plasticity and Network Hierarchy

Highlights
•Clock-regulated expression of Pura leads to circadian rhythms in Rho1 activity
•Rhythmic Rho1 activity drives structural and synaptic plasticity in pacemaker neurons
•Rho1-induced plasticity in LNv pacemaker neurons modulates their signaling
•LNv plasticity alters clock network hierarchy for seasonal adaptation and rhythmicity

Summary
Neuronal plasticity helps animals learn from their environment. However, it is challenging to link specific changes in defined neurons to altered behavior. Here, we focus on circadian rhythms in the structure of the principal s-LNv clock neurons in Drosophila. By quantifying neuronal architecture, we observed that s-LNv structural plasticity changes the amount of axonal material in addition to cycles of fasciculation and defasciculation. We found that this is controlled by rhythmic Rho1 activity that retracts s-LNv axonal termini by increasing myosin phosphorylation and simultaneously changes the balance of pre-synaptic and dendritic markers. This plasticity is required to change clock network hierarchy and allow seasonal adaptation. Rhythms in Rho1 activity are controlled by clock-regulated transcription of Puratrophin-1-like (Pura), a Rho1 GEF. Since spinocerebellar ataxia is associated with mutations in human Puratrophin-1, our data support the idea that defective actin-related plasticity underlies this ataxia.

“Circadian Rhythms in Rho1 Activity Regulate Neuronal Plasticity and Network Hierarchy” by Afroditi Petsakou, Themistoklis P. Sapsis, and Justin Blau in Cell. Published online July 30 2015 doi:10.1016/j.cell.2015.07.010

Feel free to share this neuroscience news.
Join our Newsletter
I agree to have my personal information transferred to AWeber for Neuroscience Newsletter ( more information )
Sign up to receive our recent neuroscience headlines and summaries sent to your email once a day, totally free.
We hate spam and only use your email to contact you about newsletters. You can cancel your subscription any time.