Two Genes Help Older Brain Gain New Cells

Summary: A new study reveals the role two Pumilio genes, PUM1, and PUM2, play in the creation of new neurons in the dentate gyrus.

Source: Yale.

Two genes act as molecular midwives to the birth of neurons in adult mammals and when inactivated in mice cause symptoms of Fragile X Syndrome, a major cause of mental retardation, a new Yale University study has shown.

In humans as well as mice, most neurons are created prior to birth and few new brain cells are produced as adults. The new study identified two genes that are crucial to creation of neurons in the brain region responsible for learning and memory. When the two Pumilio genes — PUM1 and PUM2 — are knocked out in mice, few neural stem cells are created in this region, which becomes very small. The mice can no longer navigate mazes and exhibit the same pathology as humans with Fragile X Syndrome.

The genes control whether RNA that has already been transcribed actually go on to create proteins, a little studied step of gene regulation with major biological implications, said senior author Haifan Lin, the Eugene Higgins Professor of Cell Biology, and professor of genetics and of obstetrics, gynecology, and reproductive sciences as well as director of the Yale Stem Cell Center.

Image shows taste cells.
The absence of two key genes dramatically shrinks number of neural stem cells (right) NeuroscienceNews.com image is credited to the researchers.
About this neuroscience research article

Meng Zhang, a graduate student in the Lin lab, was lead author of the study.

Source: Yale
Image Source: NeuroscienceNews.com image is credited to the researchers.
Original Research: Abstract for “Post-transcriptional regulation of mouse neurogenesis by Pumilio proteins” by Meng Zhang, Dong Chen, Jing Xia, Wenqi Han, Xiekui Cui, Nils Neuenkirchen, Gretchen Hermes, Nenad Sestan, and Haifan Lin in Genes and Development. Published online August 10 2017 doi:10.1101/gad.298752.117

Cite This NeuroscienceNews.com Article

[cbtabs][cbtab title=”MLA”]Yale “Two Genes Help Older Brain Gain New Cells.” NeuroscienceNews. NeuroscienceNews, 10 August 2017.
<https://neurosciencenews.com/Two Genes Help Older Brain Gain New Cells/>.[/cbtab][cbtab title=”APA”]Yale (2017, August 10). Two Genes Help Older Brain Gain New Cells. NeuroscienceNew. Retrieved August 10, 2017 from https://neurosciencenews.com/Two Genes Help Older Brain Gain New Cells/[/cbtab][cbtab title=”Chicago”]Yale “Two Genes Help Older Brain Gain New Cells.” https://neurosciencenews.com/Two Genes Help Older Brain Gain New Cells/ (accessed August 10, 2017).[/cbtab][/cbtabs]


Abstract

Post-transcriptional regulation of mouse neurogenesis by Pumilio proteins

Despite extensive studies on mammalian neurogenesis, its post-transcriptional regulation remains under-explored. Here we report that neural-specific inactivation of two murine post-transcriptional regulators, Pumilio 1 (Pum1) and Pum2, severely reduced the number of neural stem cells (NSCs) in the postnatal dentate gyrus (DG), drastically increased perinatal apoptosis, altered DG cell composition, and impaired learning and memory. Consistently, the mutant DG neurospheres generated fewer NSCs with defects in proliferation, survival, and differentiation, supporting a major role of Pum1 and Pum2 in hippocampal neurogenesis and function. Cross-linking immunoprecipitation revealed that Pum1 and Pum2 bind to thousands of mRNAs, with at least 694 common targets in multiple neurogenic pathways. Depleting Pum1 and/or Pum2 did not change the abundance of most target mRNAs but up-regulated their proteins, indicating that Pum1 and Pum2 regulate the translation of their target mRNAs. Moreover, Pum1 and Pum2 display RNA-dependent interaction with fragile X mental retardation protein (FMRP) and bind to one another’s mRNA. This indicates that Pum proteins might form collaborative networks with FMRP and possibly other post-transcriptional regulators to regulate neurogenesis.

“Post-transcriptional regulation of mouse neurogenesis by Pumilio proteins” by Meng Zhang, Dong Chen, Jing Xia, Wenqi Han, Xiekui Cui, Nils Neuenkirchen, Gretchen Hermes, Nenad Sestan, and Haifan Lin in Genes and Development. Published online August 10 2017 doi:10.1101/gad.298752.117

Feel free to share this Neuroscience News.
Join our Newsletter
I agree to have my personal information transferred to AWeber for Neuroscience Newsletter ( more information )
Sign up to receive our recent neuroscience headlines and summaries sent to your email once a day, totally free.
We hate spam and only use your email to contact you about newsletters. You can cancel your subscription any time.