Gut Microbiome Influenced Heavily by Social Circles: Lemur Study

Summary: The social network determines the individual gut microbiome in lemurs, a new study reports.

Source: UT Austin.

Social group membership is the most important factor in structuring gut microbiome composition, even when considering shared diet, environment and kinship, according to research on lemurs at The University of Texas at Austin.

The gut microbiome refers to the thousands of species of bacteria, viruses and fungi living in the digestive tract. Because of its significant impact on development, digestion and overall health, researchers have taken a strong focus on characterizing gut microbiome composition and how it is influenced by heritable, environmental and behavioral factors.

In new research published in the Proceedings of the Royal Society B, UT Austin scientists examined the impact of social networks on the gut microbiomes of wild Verreaux’s sifaka, a species of lemur, in Kirindy Mitea National Park in Madagascar.

“Like humans, wild primates often live in social groups that eat, sleep, groom and travel together,” said UT Austin epidemiologist Lauren Ancel Meyers, a co-author of the study. “These daily contacts fuel the transmission of bacteria and other microbes, both helpful and harmful.”

Studying fecal samples from 47 individual lemurs in seven social groups, researchers found that 67.6 percent of observed variation in individuals’ gut microbiomes could be attributed to group membership. Even when controlling for spatial proximity, genetic relatedness, mother-to-offspring transmission, diet and pairwise social interactions, researchers found that permanent social groups were the most important factor in shaping gut microbiome composition. Furthermore, more tight-knit groups had more homogeneous gut microbiomes.

“More than diet, kinship or habitat, it is the social network that predicts individual gut microbial communities in these social primates,” said UT Austin anthropologist Rebecca Lewis, a co-author of the study. “Thus, one of the benefits of living in a tight-knit group may be the social cultivation of beneficial gut microbes.”

A group of lemurs in Kirindy Mitea National Park in Madagascar. NeuroscienceNews.com image is credited to Amanda Perofsky, UT Austin.

Researchers also found that lemurs that received or initiated grooming or partook in scent-marking more frequently had greater gut microbial diversity.

“Typically, more socially connected individuals are considered to be vulnerable to infection or the ‘superspreaders’ of pathogens,” said lead author Amanda Perofsky, a Ph.D. candidate in integrative biology at UT Austin. “However, these animals may in fact be more resistant to infection because of their more diverse, stable microbiomes and contribute to the transmission of beneficial bacteria between otherwise disjointed parts of the population.”

Previous studies have considered the effects of social group membership and pairwise associations on primate gut microbiomes, but this is the first to consider group membership, pairwise associations and individual-level demographic, genetic and social connectivity in tandem.

About this neuroscience research article

Source: Rachel Griess – UT Austin
Publisher: Organized by NeuroscienceNews.com.
Image Source: NeuroscienceNews.com image is credited to Amanda Perofsky, UT Austin.
Original Research: Abstract for “Hierarchical social networks shape gut microbial composition in wild Verreaux’s sifaka” by Amanda C. Perofsky, Rebecca J. Lewis, Laura A. Abondano, Anthony Di Fiore, and Lauren Ancel Meyers in Proceedings of the Royal Society B. Published online December 6 2017 doi:10.1098/rspb.2017.2274

Cite This NeuroscienceNews.com Article

[cbtabs][cbtab title=”MLA”]UT Austin “Gut Microbiome Influenced Heavily by Social Circles: Lemur Study.” NeuroscienceNews. NeuroscienceNews, 6 December 2017.
<https://neurosciencenews.com/microbiome-social-circle-8120/>.[/cbtab][cbtab title=”APA”]UT Austin (2017, December 6). Gut Microbiome Influenced Heavily by Social Circles: Lemur Study. NeuroscienceNews. Retrieved December 6, 2017 from https://neurosciencenews.com/microbiome-social-circle-8120/[/cbtab][cbtab title=”Chicago”]UT Austin “Gut Microbiome Influenced Heavily by Social Circles: Lemur Study.” https://neurosciencenews.com/microbiome-social-circle-8120/ (accessed December 6, 2017).[/cbtab][/cbtabs]


Abstract

Hierarchical social networks shape gut microbial composition in wild Verreaux’s sifaka

In wild primates, social behaviour influences exposure to environmentally acquired and directly transmitted microorganisms. Prior studies indicate that gut microbiota reflect pairwise social interactions among chimpanzee and baboon hosts. Here, we demonstrate that higher-order social network structure—beyond just pairwise interactions—drives gut bacterial composition in wild lemurs, which live in smaller and more cohesive groups than previously studied anthropoid species. Using 16S rRNA gene sequencing and social network analysis of grooming contacts, we estimate the relative impacts of hierarchical (i.e. multilevel) social structure, individual demographic traits, diet, scent-marking, and habitat overlap on bacteria acquisition in a wild population of Verreaux’s sifaka (Propithecus verreauxi) consisting of seven social groups. We show that social group membership is clearly reflected in the microbiomes of individual sifaka, and that social groups with denser grooming networks have more homogeneous gut microbial compositions. Within social groups, adults, more gregarious individuals, and individuals that scent-mark frequently harbour the greatest microbial diversity. Thus, the community structure of wild lemurs governs symbiotic relationships by constraining transmission between hosts and partitioning environmental exposure to microorganisms. This social cultivation of mutualistic gut flora may be an evolutionary benefit of tight-knit group living.

“Hierarchical social networks shape gut microbial composition in wild Verreaux’s sifaka” by Amanda C. Perofsky, Rebecca J. Lewis, Laura A. Abondano, Anthony Di Fiore, and Lauren Ancel Meyers in Proceedings of the Royal Society B. Published online December 6 2017 doi:10.1098/rspb.2017.2274

Feel free to share this Neuroscience News.
Join our Newsletter
Thank you for subscribing.
Something went wrong.
I agree to have my personal information transferred to AWeber for Neuroscience Newsletter ( more information )
Sign up to receive our recent neuroscience headlines and summaries sent to your email once a day, totally free.
We hate spam and only use your email to contact you about newsletters. You can cancel your subscription any time.
Exit mobile version