Dark Colors Are Conveyed Faster Than Light

Luminance changes create ‘motion’ through activity waves in the brain.

“Did something move over there?” Everyone has experienced this situation. One is looking towards a sound source, but with the best will in the world, one cannot detect an object. Only its sudden movement, even if minimal, allows its immediate perception.

Scientists at the Ruhr University Bochum have investigated this phenomenon and show for the first time how simultaneous counterchange of luminance at the borders between object and background triggers activity waves in the visual brain. These waves may constitute a sensitive signal for motion detection. The results of this study have now been published in “The Journal of Neuroscience”.

Unmasking through counterchanging luminance

There are many examples in the animal kingdom how body form and surface patterns are used for camouflage by mimicking the surrounding environment. Both predator and prey apply the same strategy. To escape perception, dark-light distributions of the specific natural backgrounds are imitated. “The elementary first step in vision comprises distinction between darks and lights. However, any visual system is confronted with the difficulty of creating a meaningful order out of the manifold distributions of light contrasts in order to identify objects. One efficient mechanism might be to account for coherent spatiotemporal changes of luminance that inevitably occur through body motion against backgrounds”, says the head of the study, PD Dr. Dirk Jancke. Using an imaging procedure with high resolutions, the scientists revealed that a simultaneous counterchange of luminance of neighboring stimuli creates a sequential activation in the primary visual cortex. The subsequently evoked activity waves and their direction may be used in higher brain areas for the encoding of motion.

Race of signals in the brain

In their study, the scientists presented small gray squares on a monitor screen. The squares then either turned bright or dark with identical luminance intensities and the scientists recorded the subsequent brain activity. The surprising result was that the darkening squares were represented considerably earlier in the brain than the squares that brightened. “This shows that simultaneous changes in luminance occurring in the outer world were time-shifted in the brain”, says Sascha Rekauzke, first author of the study. A small temporal offset of a few milliseconds between the processing of darks and lights was already known. Within the eyes, retinal ganglion cells that signal light “ON” open their ion channels directly upon transmitter release. In contrast, light “OFF” signals are conveyed indirectly, via further intracellular cascades. The RUB scientist now showed that the resulting time difference is further amplified within the brain, in the range of about ten milliseconds. As a consequence, simultaneous counterchange of luminance at neighboring locations leads to a spatiotemporal offset of activation in the brain. This offset triggers a motion signal in the form of a wave of activity spreading asymmetrically in one direction.

Image of black and white blocks.
While looking at the figure, rapid eye movements provide simultaneous counterchanges of luminance at the borders between dark and bright regions. This results in the initiation of propagating activity waves in the primary visual cortex. Their further processing in higher brain areas might trigger perception of object motion. Credit: Bild: Dirk Jancke, RUB.

Asymmetry – a universal principle

Asymmetries are widely used in biological systems. A common example is the problem of sound localization. Acoustic waves from laterally displaced sources reach the ears with minimal temporal offset. From the interaural time difference neuronal networks compute time delays and our brain interprets from them the presumed direction of the sound source. Dirk Jancke: “Our brain is a giant comparison machine based on self-generated asymmetries. Our study further substantiates this and shows that this is true even for elementary steps in perception. ”

About this psychology research

Funding: The Deutsche Forschungsgemeinschaft (German Research Foundation) has financed the study, e.g. under the framework of Bochum’s Collaborative Research Center 874 “Integration and Representation of Sensory Processes” (Project A2, Eysel/Jancke).

Source: RUB
Image Source: The image is credited to Bild: Dirk Jancke, RUB.
Original Research: Full open access research for “Temporal Asymmetry in Dark–Bright Processing Initiates Propagating Activity across Primary Visual Cortex” by Sascha Rekauzke1, Nora Nortmann, Robert Staadt, Howard S. Hock, Gregor Schöner, and Dirk Jancke in Journal of Neuroscience. Published online February 10 2016 doi:10.1523/JNEUROSCI.3235-15.2016


Abstract

Temporal Asymmetry in Dark–Bright Processing Initiates Propagating Activity across Primary Visual Cortex

Differences between visual pathways representing darks and lights have been shown to affect spatial resolution and detection timing. Both psychophysical and physiological studies suggest an underlying retinal origin with amplification in primary visual cortex (V1). Here we show that temporal asymmetries in the processing of darks and lights create motion in terms of propagating activity across V1. Exploiting the high spatiotemporal resolution of voltage-sensitive dye imaging, we captured population responses to abrupt local changes of luminance in cat V1. For stimulation we used two neighboring small squares presented on either bright or dark backgrounds. When a single square changed from dark to bright or vice versa, we found coherent population activity emerging at the respective retinal input locations. However, faster rising and decay times were obtained for the bright to dark than the dark to bright changes. When the two squares changed luminance simultaneously in opposite polarities, we detected a propagating wave front of activity that originated at the cortical location representing the darkened square and rapidly expanded toward the region representing the brightened location. Thus, simultaneous input led to sequential activation across cortical retinotopy. Importantly, this effect was independent of the squares’ contrast with the background. We suggest imbalance in dark–bright processing as a driving force in the generation of wave-like activity. Such propagation may convey motion signals and influence perception of shape whenever abrupt shifts in visual objects or gaze cause counterchange of luminance at high-contrast borders.

SIGNIFICANCE STATEMENT An elementary process in vision is the detection of darks and lights through the retina via ON and OFF channels. Psychophysical and physiological studies suggest that differences between these channels affect spatial resolution and detection thresholds. Here we show that temporal asymmetries in the processing of darks and lights create motion signals across visual cortex. Using two neighboring squares, which simultaneously counterchanged luminance, we discovered propagating activity that was strictly drawn out from cortical regions representing the darkened location. Thus, a synchronous stimulus event translated into sequential wave-like brain activation. Such propagation may convey motion signals accessible in higher brain areas, whenever abrupt shifts in visual objects or gaze cause counterchange of luminance at high-contrast borders.

“Temporal Asymmetry in Dark–Bright Processing Initiates Propagating Activity across Primary Visual Cortex” by Sascha Rekauzke1, Nora Nortmann, Robert Staadt, Howard S. Hock, Gregor Schöner, and Dirk Jancke in Journal of Neuroscience. Published online February 10 2016 doi:10.1523/JNEUROSCI.3235-15.2016

Feel free to share this Neuroscience News.
Join our Newsletter
I agree to have my personal information transferred to AWeber for Neuroscience Newsletter ( more information )
Sign up to receive our recent neuroscience headlines and summaries sent to your email once a day, totally free.
We hate spam and only use your email to contact you about newsletters. You can cancel your subscription any time.