Transplanted Interneurons Can Help Reduce Fear: Mouse Study

Summary: Coupling training to reduce fear and transplanting embryonic interneurons into the amygdala of mice, researchers were able to reduce fear response, a new study reports.

Source: Cell Press.

The expression “once bitten, twice shy” is an illustration of how a bad experience can induce fear and caution. How to effectively reduce the memory of aversive events is a fundamental question in neuroscience. Scientists in China are reporting that by transplanting mouse embryonic interneurons into the brains of mice and combining that procedure with training to lessen fear, they can help to reduce the fear response. The study is being published December 8 in Neuron.

“Anxiety and fear-related disorders such as post-traumatic stress disorder [PTSD] cause great suffering and impose high costs to society,” says Yong-Chun Yu, a professor at the Institutes of Brain Science at Fudan University in Shanghai and the study’s senior author. “Pharmacological and behavioral treatments of PTSD can reduce symptoms, but many people tend to relapse. There’s a pressing need for new strategies to treat these refractory cases.”

In the study, the researchers used traditional conditioning to instill fear in the mice. They exposed them to a sound as a neutral stimulus, followed by a mild shock to the foot. To determine the level of fear, they measured the amount of time the mice exhibited freezing behavior–the natural sympathetic fear response in prey animals that is indicated by crouching. They then conducted fear extinction training, in which the mice were exposed to the sound but not the shock. After a few rounds, the freezing response times were significantly reduced.

To determine the contribution that transplanting immature interneurons into the amygdala–a brain structure known to be involved in processing of fear and other emotions–could have on fear extinction training, they inserted medial ganglionic eminence (MGE) cells taken from embryos into the amygdala regions of mature mice. The transplanted cells were labeled with green fluorescent protein, enabling the researchers to experimentally confirm that the new cells were integrating into the brains’ circuits.

“We found that although the transplanted interneurons did not alter the formation of fear memories, they reduced recovery and renewal of fear after extinction training,” Yu says. However, transplantation of the neurons alone was not enough to reduce fear memories, indicating that the MGE cells were boosting the effectiveness of that training.

“Unexpectedly, we observed that the erasure of fear memory is facilitated only by transplanted immature interneurons–two weeks after transplantation,” he adds. “Previous studies had indicated that transplanted MGE cells induce plasticity when they are relatively mature–four weeks after transplantation.”

Image shows the location of the amygdala in the brain.
To determine the contribution that transplanting immature interneurons into the amygdala–a brain structure known to be involved in processing of fear and other emotions–could have on fear extinction training. NeuroscienceNews image is for illustrative purposes only.

Further studies indicated that the transplanted immature interneurons reactivated a juvenile-like plasticity in the mature amygdala. “Likely related to the changes in the expression of perineuronal nets (PNNs), which are responsible for synaptic stabilization, we found that transplanted immature neurons enhance synaptic plasticity in the amygdala’s circuits by disrupting PNNs, converting the amygdala to a juvenile stage,” Yu says.

Additional experiments are required to determine how these transplanted immature interneurons rejuvenate the mature circuits. “We still don’t know the mechanism by which these immature neurons modulate the fear extinction behavior in the mice,” he concludes. “We also need to determine the exact subtype of transplanted interneurons and the exact subregion in the amygdala that are responsible for these behavioral effects.”

About this neuroscience research article

Funding: This research was supported by the Ministry of Science and Technology of China, the Natural Science Foundation of China, the Foundation of the Ministry of Education of China, and the Shanghai Science and Technology Commission.

Source: Joseph Caputo – Cell Press
Image Source: NeuroscienceNews.com image is in the public domain.
Original Research: Abstract for “Fear Erasure Facilitated by Immature Inhibitory Neuron Transplantation” by Wu-Zhou Yang, Ting-Ting Liu, Jun-Wei Cao, Xuan-Fu Chen, Xiao Liu, Min Wang, Xin Su, Shu-Qing Zhang, Bin-Long Qiu, Wen-Xiang Hu, Lin-Yun Liu, Lan Ma, and Yong-Chun Yu in Neuron. Published online December 8 2016 doi:10.1016/j.neuron.2016.11.018

Cite This NeuroscienceNews.com Article

[cbtabs][cbtab title=”MLA”]Cell Press. “Transplanted Interneurons Can Help Reduce Fear: Mouse Study.” NeuroscienceNews. NeuroscienceNews, 4 December 2016.
<https://neurosciencenews.com/interneuron transplant-fear-5712/>.[/cbtab][cbtab title=”APA”]Cell Press. (2016, December 4). Transplanted Interneurons Can Help Reduce Fear: Mouse Study. NeuroscienceNews. Retrieved December 4, 2016 from https://neurosciencenews.com/interneuron transplant-fear-5712/[/cbtab][cbtab title=”Chicago”]Cell Press. “Transplanted Interneurons Can Help Reduce Fear: Mouse Study.” https://neurosciencenews.com/interneuron transplant-fear-5712/ (accessed December 4, 2016).[/cbtab][/cbtabs]


Abstract

Fear Erasure Facilitated by Immature Inhibitory Neuron Transplantation

Highlights
•Immature interneuron transplantation into the amygdala facilitates fear erasure
•Transplanted interneurons develop similarly to native interneurons
•Transplanted immature interneurons convert host BLA toward a juvenile stage
•Transplanted immature interneurons enhance synaptic plasticity

Summary
Transplantation of embryonic γ-aminobutyric acid (GABA)ergic neurons has been shown to modify disease phenotypes in rodent models of neurologic and psychiatric disorders. However, whether transplanted interneurons modulate fear memory remains largely unclear. Here, we report that transplantation of embryonic interneurons into the amygdala does not alter host fear memory formation. Yet approximately 2 weeks after transplantation, but not earlier or later, extinction training produces a marked reduction in spontaneous recovery and renewal of fear response. Further analyses reveal that transplanted interneurons robustly form functional synapses with neurons of the host amygdala and exhibit similar developmental maturation in electrophysiological properties as native amygdala interneurons. Importantly, transplanted immature interneurons reduce the expression of perineuronal nets, promote long-term synaptic plasticity, and modulate both excitatory and inhibitory synaptic transmissions of the host circuits. Our findings demonstrate that transplanted immature interneurons modify amygdala circuitry and suggest a previously unknown strategy for the prevention of extinction-resistant pathological fear.

“Fear Erasure Facilitated by Immature Inhibitory Neuron Transplantation” by Wu-Zhou Yang, Ting-Ting Liu, Jun-Wei Cao, Xuan-Fu Chen, Xiao Liu, Min Wang, Xin Su, Shu-Qing Zhang, Bin-Long Qiu, Wen-Xiang Hu, Lin-Yun Liu, Lan Ma, and Yong-Chun Yu in Neuron. Published online December 8 2016 doi:10.1016/j.neuron.2016.11.018

Feel free to share this Neuroscience News.
Join our Newsletter
I agree to have my personal information transferred to AWeber for Neuroscience Newsletter ( more information )
Sign up to receive our recent neuroscience headlines and summaries sent to your email once a day, totally free.
We hate spam and only use your email to contact you about newsletters. You can cancel your subscription any time.