A password will be e-mailed to you.

New Model for the Origin of Grid Cells

Summary: A new study theorizes the development of grid cells depends upon the synaptic input from place cells.

Source: LMU.

LMU neurobiologists present a new theory for the origin of the grid cells required for spatial orientation in the mammalian brain, which assigns a vital role to the timing of trains of signals they receive from neurons called place cells.

Nerve cells in the brain known as place cells and grid cells, respectively, play a crucial role in spatial navigation in mammals. Individual place cells in the hippocampus respond to only a few spatial locations. The grid cells in the entorhinal complex, on the other hand, fire at multiple positions in the environment, such that specific sets are consecutively activated as an animal traverses its habitat. These activation patterns give rise to a virtual map, made up of a hexagonal arrangement of grid cells that reflect the relative distances between particular landmarks in the real world. The brain is therefore capable of constructing a virtual map which encodes its own position in space. The Nobel Prize for Medicine and Physiology 2015 went to the discoverers of this system, which has been referred to as the brain’s GPS. However, the developmental relationship between place cells and grid cells, as well as the mechanism of origin of grid cells and their disposition in hexagonal lattices remain unclear.

Now LMU neurobiologists Professor Christian Leibold and his coworker Mauro Miguel Monsalve Mercado have proposed a new theoretical model, which for the first time provides a plausible model based on known biological processes. The model implies that the development of grid cells and their response fields depend on synaptic input from place cells. The new findings are described in the journal Physical Review Letters.

The authors of the new paper assign a central role in their model to correlations in the timing of the neuronal response sequences generated by different place cells. The members of these groups become active when the animal reaches certain locations in space, and they transmit nerve impulses in precisely coordinated temporal sequences, which follow a particular rhythmic patterns, and thereby encode relative spatial distances. Leibold and Monsalve Mercado have used a classical neuronal learning rule, known as Hebb’s rule, to analyze the temporal correlations between the firing patterns of place cells and the organization of the grid cells.

Hebb’s rule states that repeated activation of two functionally coupled neurons in quick succession progressively enhances the efficiency of synaptic transmission between them.

By applying this concept of activity-dependent synaptic plasticity to the correlated temporal firing patterns of place cells, the authors can account for the formation of the hexagonal dispositions of grid cells observed in freely navigating mammals.

Image shows neurons.

The new model implies that grid cells are generated by a neuronal learning process. NeuroscienceNews.com image is adapted from the LMU news release.

“The models so far proposed to explain the development of grid cells on the basis of input from place cells were unspecific about the precises underlying biological mechanisms. We have now, for the first time, been able to construct a coherent model for the origin of grid cells which makes use of known biological mechanisms,” says Christian Leibold.

The new model implies that grid cells are generated by a neuronal learning process. This process exploits synaptic plasticity to transform temporal coordinated signaling between place cells into the hexagonal patterns of grid-cells reponses observed in the entorhinal complex.

The model therefore predicts that the grid cells should first arise in the deep layers of the entorhinal cortex.

About this neuroscience research article

Source: Luise Dirscherl – LMU
Image Source: NeuroscienceNews.com image is adapted from the LMU news release.
Original Research: Abstract for “Hippocampal Spike-Timing Correlations Lead to Hexagonal Grid Fields” by Mauro M. Monsalve-Mercado and Christian Leibold in Physical Review Letters. Published online July 19 2017 doi:10.1103/PhysRevLett.119.038101

Cite This NeuroscienceNews.com Article
LMU “New Model for the Origin of Grid Cells.” NeuroscienceNews. NeuroscienceNews, 21 July 2017.
<http://neurosciencenews.com/grid-cell-origin-7147/>.
LMU (2017, July 21). New Model for the Origin of Grid Cells. NeuroscienceNew. Retrieved July 21, 2017 from http://neurosciencenews.com/grid-cell-origin-7147/
LMU “New Model for the Origin of Grid Cells.” http://neurosciencenews.com/grid-cell-origin-7147/ (accessed July 21, 2017).

Abstract

Hippocampal Spike-Timing Correlations Lead to Hexagonal Grid Fields

Space is represented in the mammalian brain by the activity of hippocampal place cells, as well as in their spike-timing correlations. Here, we propose a theory for how this temporal code is transformed to spatial firing rate patterns via spike-timing-dependent synaptic plasticity. The resulting dynamics of synaptic weights resembles well-known pattern formation models in which a lateral inhibition mechanism gives rise to a Turing instability. We identify parameter regimes in which hexagonal firing patterns develop as they have been found in medial entorhinal cortex.

“Hippocampal Spike-Timing Correlations Lead to Hexagonal Grid Fields” by Mauro M. Monsalve-Mercado and Christian Leibold in Physical Review Letters. Published online July 19 2017 doi:10.1103/PhysRevLett.119.038101

Feel free to share this Neuroscience News.
Join our Newsletter
Sign up to receive the latest neuroscience headlines and summaries sent to your email daily from NeuroscienceNews.com
We hate spam. Your email address will not be sold or shared with anyone else.
No more articles