What Are The Odds of That? Risky Gambling Choices Influenced by Single Brain Connection

Whether a person will place a risky bet comes down to a newly discovered tract of neurons spanning two brain regions. The findings could help understand and treat gambling or addiction disorders.

One person’s risky bet is another’s exciting opportunity.

The difference between those outlooks comes down to more than just disposition: It turns out that people with a stronger connection between two brain regions have a more cautious financial outlook.

“Activity in one brain region appears to indicate ‘uh oh, I might lose money,’ but in another seems to indicate ‘oh yay, I could win something,'” said Brian Knutson, associate professor of psychology. “The balance between this ‘uh oh’ and ‘oh yay’ activity differs between people and can determine the gambling decisions we make.”

Researchers have tracked activity in those two brain regions – known as the anterior insula and nucleus accumbens – for the past decade, but Knutson was curious how the two work together. Are they directly connected, or do they both influence a different brain region that makes the ultimate decision?

Knowing this could help scientists and policymakers who want to better understand risky decision-making in the context of gambling and addiction and develop more effective interventions.

Knutson’s team employed a technique developed at Stanford that identifies tracts of neurons that connect brain regions and measures the strength of those connections in terms of how well insulated they are.

Using that technique, called diffusion-weighted MRI, Knutson and graduate student Josiah Leong found a tract that directly connects the anterior insula and nucleus accumbens – something that had been seen before in animals but never in humans.

What’s more, they found that the thicker the sheath of fatty tissue insulating the bundle – an indicator of the strength of the connection – the more cautious the study participants’ decisions were in a gambling test. The neuronal connection appears to be a conduit for the more cautious brain region to dampen activity in the more enthusiastic region.

“Most people love the small chance of a huge win,” Knutson said. “But people vary. Some people really, really like it. But people who have a stronger connection don’t like it as much.”

Magnetic gambling den

In the study published Jan. 6 in the journal Neuron, the researchers gave each participant $10 that they could gamble, or not, in a series of games with different odds. The participants got to keep any money left at the end of the experiment.

Money in hand, participants entered an MRI chamber where they could see a roulette wheel and the odds for winning or losing. In one bet, they might have equal odds to win or lose $3. In another, they might have higher odds of winning a small amount and small odds of losing a lot or vice versa.

Image shows people gambling around a roulette table.
Using that technique, called diffusion-weighted MRI, Knutson and graduate student Josiah Leong found a tract that directly connects the anterior insula and nucleus accumbens – something that had been seen before in animals but never in humans. Image is for illustrative purposes only.

As the participants weighed the various gambles, the researchers tracked activity in the two brain regions. The team noticed that all gamblers – even the cautious ones with a well-insulated connection – would sometimes place risky bets. And when they did, the more cautious region stayed quieter while the enthusiastic region grew more active.

“We could predict the person’s upcoming bet based on the balance of activity in these regions,” said Knutson, who is also a member of Stanford Bio-X and the Stanford Woods Institute for the Environment.

The stronger, better insulated the connection between the regions, the less likely it was that the enthusiastic region would become active at the prospect of a large but unlikely win.

Knutson said that finding the connection between the two regions won’t immediately lead to new interventions for people with gambling problems or other issues relating to risky choices, but it does provide a starting point for studying interventions.

“Now we can start asking interesting questions about impulse control and gambling,” Knutson said. “For example, does the connection change over the course of therapy?”

Anything that strengthens the connection might potentially help people reduce risky decisions, whether in gambling, drug addiction or other potentially risky behaviors.

Knutson is a leader of the NeuroChoice initiative, part of the Stanford Neurosciences Institute, that has a goal of both understanding the brain regions and pathways involved in how people make choices and working with colleagues in public policy, law, business and education to apply those findings in the real world.

“This finding is a step toward achieving some of the goals we set out in NeuroChoice,” Knutson said.

About this genetics and sleep research

Other scientists who contributed to the study include former graduate student Charlene Wu; Franco Pestilli, assistant professor of psychological and brain sciences at Indiana University; and Gregory Samanez-Larkin, assistant professor of psychology at Yale University.

Funding:The research was funded by the FINRA Investor Education Foundation, the Stanford Neurosciences Institute and the National Institutes of Health.

Source: Amy Adams – Stanford
Image Credit: The image is in the public domain
Original Research: Abstract for “White-Matter Tract Connecting Anterior Insula to Nucleus Accumbens Correlates with Reduced Preference for Positively Skewed Gambles” by Josiah K. Leong, Franco Pestilli, Charlene C. Wu, Gregory R. Samanez-Larkin, Brian Knutson in Neuron. Published online January 6 2016 doi:10.1016/j.neuron.2015.12.015


Abstract

White-Matter Tract Connecting Anterior Insula to Nucleus Accumbens Correlates with Reduced Preference for Positively Skewed Gambles

Highlights
•A novel tract connecting the anterior insula to the NAcc was traced and validated
•Tract coherence correlated with reduced preference for positively skewed gambles
•NAcc activity before risky choice mediated the association of structure with behavior

Summary
Individuals sometimes show inconsistent risk preferences, including excessive attraction to gambles featuring small chances of winning large amounts (called “positively skewed” gambles). While functional neuroimaging research indicates that nucleus accumbens (NAcc) and anterior insula (AIns) activity inversely predict risky choice, structural connections between these regions have not been described in humans. By combining diffusion-weighted MRI with tractography, we identified the anatomical trajectory of white-matter tracts projecting from the AIns to the NAcc and statistically validated these tracts using Linear Fascicle Evaluation (LiFE) and virtual lesions. Coherence of the right AIns-NAcc tract correlated with reduced preferences for positively skewed gambles. Further, diminished NAcc activity during gamble presentation mediated the association between tract structure and choice. These results identify an unreported tract connecting the AIns to the NAcc in humans and support the notion that structural connections can alter behavior by influencing brain activity as individuals weigh uncertain gains against uncertain losses.

“White-Matter Tract Connecting Anterior Insula to Nucleus Accumbens Correlates with Reduced Preference for Positively Skewed Gambles” by Josiah K. Leong, Franco Pestilli, Charlene C. Wu, Gregory R. Samanez-Larkin, Brian Knutson in Neuron. Published online January 6 2016 doi:10.1016/j.neuron.2015.12.015

Feel free to share this neuroscience news.
Join our Newsletter
I agree to have my personal information transferred to AWeber for Neuroscience Newsletter ( more information )
Sign up to receive our recent neuroscience headlines and summaries sent to your email once a day, totally free.
We hate spam and only use your email to contact you about newsletters. You can cancel your subscription any time.