Genetic Mechanism Could Delay Alzheimer’s Onset by Ten Years

Researchers discover a gene variant that provides a delaying mechanism for Alzheimer’s disease.

Medical research has yet to discover an Alzheimer’s treatment that effectively slows the disease’s progression, but neuroscientists at UC Santa Barbara may have uncovered a mechanism by which onset can be delayed by as much as 10 years.

That mechanism is a gene variant — an allele — found in a part of the genome that controls inflammation. The variant appears to prevent levels of the protein eotaxin from increasing with age, which it usually does hand in hand with inflammation. The findings appear in the journal Molecular Psychiatry.

Lead author Matthew Lalli, who earned his Ph.D. working in UCSB’s Kosik Research Group, sequenced the genomes of more than 100 members of a Colombian family affected with early-onset Alzheimer’s. These individuals have a rare gene mutation that leads to full-blown disease around age 49. However, in a few outliers, the disease manifests up to a decade later.

“We wanted to study those who got the disease later to see if they had a protective modifier gene,” said co-author Kenneth S. Kosik, co-director of UCSB’s Neuroscience Research Institute and a professor in the Department of Molecular, Cellular and Developmental Biology. “We know they have the mutation. Why are they getting it so much later when the mutation so powerfully determines the early age at onset in most of the family members? We hypothesized the existence of gene variant actually pushes the disease onset as much as 10 years later.”

Lalli used a statistical genetics approach to determine whether these outliers possess any protective gene variants, and he found a cluster of them. “We know that age is the greatest risk factor for Alzheimer’s beyond genetics,” said Lalli, who is now a postdoctoral fellow at Washington University in St. Louis. “The variant that we found is age-related, so it might explain the actual mechanism of how an increase in age increases the risk of Alzheimer’s — through a rise in eotaxin.”

To replicate the findings, the UCSB researchers collaborated with UC San Francisco to study 150 individuals affected with Alzheimer’s or dementia. UCSF investigators measured levels of eotaxin in the participants’ blood and collected DNA samples to confirm who carried the gene variant identified in the Colombian population.

The results showed that people in the UCSF study with the same variant had eotaxin levels that did not rise with age. They also experienced a modest but definite delay in the onset of Alzheimer’s. “If you have that variant, maybe one way to delay or reduce your risk for Alzheimer’s is by genetically holding in check the normal increase in eotaxin that occurs in most of the population,” Kosik explained.

“Although the gene mutation in the Colombian population is extremely rare, this variant is not,” he added. “It occurs in about 30 percent of the population, which means it has the potential to protect a lot of people against Alzheimer’s.”

Image shows a brain of an Alzheimer's patient.
The results showed that people in the UCSF study with the same variant had eotaxin levels that did not rise with age. They also experienced a modest but definite delay in the onset of Alzheimer’s. Image is for illustrative purposes only.

Previous independent work at Stanford University has shown that adding eotaxin to young mice made them functionally older. Stanford is also currently testing whether blood transfusion from young individuals to older ones confers benefits. “The results of this work may provide additional evidence that eotaxin plays a role in the deleterious effects of aging,” said Lalli.

“We have an important preliminary finding,” said Kosik. “If this is a true mechanism of Alzheimer’s progression, then we can modify the level of eotaxin in individuals to treat the disease. But our results must be replicated and proved by other laboratories — and in larger populations.”

About this Alzheimer’s disease research

Source: Julie Cohen – UCSB
Image Credit: The image is in the public domain
Original Research: Full open access research for “Whole-genome sequencing suggests a chemokine gene cluster that modifies age at onset in familial Alzheimer’s disease” by M A Lalli, B M Bettcher, M L Arcila, G Garcia, C Guzman, L Madrigal, L Ramirez, J Acosta-Uribe, A Baena, K J Wojta, G Coppola, R Fitch, M D de Both, M J Huentelman, E M Reiman, M E Brunkow, G Glusman, J C Roach, A W Kao, F Lopera and K S Kosik in Molecular Psychiatry. Published online September 1 2015 doi:10.1038/mp.2015.131


Abstract

Whole-genome sequencing suggests a chemokine gene cluster that modifies age at onset in familial Alzheimer’s disease

We have sequenced the complete genomes of 72 individuals affected with early-onset familial Alzheimer’s disease caused by an autosomal dominant, highly penetrant mutation in the presenilin-1 (PSEN1) gene, and performed genome-wide association testing to identify variants that modify age at onset (AAO) of Alzheimer’s disease. Our analysis identified a haplotype of single-nucleotide polymorphisms (SNPs) on chromosome 17 within a chemokine gene cluster associated with delayed onset of mild-cognitive impairment and dementia. Individuals carrying this haplotype had a mean AAO of mild-cognitive impairment at 51.0±5.2 years compared with 41.1±7.4 years for those without these SNPs. This haplotype thus appears to modify Alzheimer’s AAO, conferring a large (~10 years) protective effect. The associated locus harbors several chemokines including eotaxin-1 encoded by CCL11, and the haplotype includes a missense polymorphism in this gene. Validating this association, we found plasma eotaxin-1 levels were correlated with disease AAO in an independent cohort from the University of California San Francisco Memory and Aging Center. In this second cohort, the associated haplotype disrupted the typical age-associated increase of eotaxin-1 levels, suggesting a complex regulatory role for this haplotype in the general population. Altogether, these results suggest eotaxin-1 as a novel modifier of Alzheimer’s disease AAO and open potential avenues for therapy.

“Whole-genome sequencing suggests a chemokine gene cluster that modifies age at onset in familial Alzheimer’s disease” by M A Lalli, B M Bettcher, M L Arcila, G Garcia, C Guzman, L Madrigal, L Ramirez, J Acosta-Uribe, A Baena, K J Wojta, G Coppola, R Fitch, M D de Both, M J Huentelman, E M Reiman, M E Brunkow, G Glusman, J C Roach, A W Kao, F Lopera and K S Kosik in Molecular Psychiatry. Published online September 1 2015 doi:10.1038/mp.2015.131

Feel free to share this neuroscience news.
Join our Newsletter
I agree to have my personal information transferred to AWeber for Neuroscience Newsletter ( more information )
Sign up to receive our recent neuroscience headlines and summaries sent to your email once a day, totally free.
We hate spam and only use your email to contact you about newsletters. You can cancel your subscription any time.