Exposing the Brain’s Clock

Summary: A new study sheds light on numerous functions of our circadian clock, from how the brain maintains performance during the day to how shift workers struggle to maintain attention during early morning hours.

Source: University of Surrey.

Effects of circadian clocks and sleep loss vary across brain regions, new study finds.

Ever wondered what happens inside your brain when you stay awake for a day, a night and another day, before you finally go to sleep? In a new study published today in the journal Science, a team of researchers from the University of Liege and the University of Surrey have scanned the brains of 33 participants across such a 2-day sleep deprivation period and following recovery sleep. Activity in several brain regions, and in particular subcortical areas, followed a 24-hour rhythmic (circadian) pattern the timing of which, surprisingly, varied across brain regions.

Other brain regions, in particular frontal brain areas, showed a reduction in activity with time awake followed by a return to pre-sleep-deprivation levels after recovery sleep. Some brain regions displayed a pattern which was a combination of a rhythmic pattern and a decline associated with time awake.

Even more surprising, the researchers discovered that these effects of sleep loss on brain activity were much more widespread when the participants performed a simple (reaction time) task compared to a more complex memory-reliant task.

In each participant 13 brain scans were obtained: 12 during the sleep deprivation period and one following recovery sleep. The data were aligned with the melatonin rhythm which is a hormonal marker of the human brain circadian pacemaker, i.e. a marker of brain time.

This variety in brain responses and the prominent circadian rhythm component shed new light on the complexity of the mechanisms by which the brain responds to sleep loss. It also shows that the time of day at which we scan the brain has a prominent effect on the picture we get.

Behavioural observations have long suggested that brain function is influenced by the duration of wakefulness and the biological time of day (circadian rhythmicity). During a period of sleep deprivation performance does not deteriorate linearly with time awake. It remains constant during the day, rapidly deteriorates during the biological night and then slightly improves the next day.

The current findings demonstrate that these two processes and this time course can also be detected at the level of brain responses as assessed by functional Magnetic Resonance Imaging (fmRI) which provides measures of brain activity. In addition they show that the relative contribution of sleep loss and time of day effects varies across brain regions.

Professor Derk-Jan Dijk from the University of Surrey said: “It is very gratifying to see directly at the level of fMRI-detected brain responses that circadian rhythmicity and lack of sleep both have such a profound influence on brain function.

Image shows a sleepy looking man holding a pillow.
Behavioural observations have long suggested that brain function is influenced by the duration of wakefulness and the biological time of day (circadian rhythmicity). During a period of sleep deprivation performance does not deteriorate linearly with time awake. It remains constant during the day, rapidly deteriorates during the biological night and then slightly improves the next day. NeuroscienceNews.com image is for illustrative purposes only.

“Our data may ultimately help us to better understand how the brain maintains performance during the day, why many symptoms in psychiatric and neurodegenerative conditions wax and wane, and why in the early morning after a night without sleep we struggle to maintain attention, whereas in the evening it is not an issue.”

Vincenzo Muto from the University of Liege said: “Our data highlights the complex interaction between our biological clock and time spent awake at a regional brain level: extremely intriguing!”

Pierre Maquet from the University of Liege added: “These results suggest the fascinating hypothesis that brain function is continuously modulated by two factors that are both globally expressed but locally modulated : sleep pressure and circadian rhythmicity.”

About this neuroscience research article

Source: Peter La – University of Surrey
Image Source: This NeuroscienceNews.com image is for illustrative purposes only.
Original Research: Abstract for “Local modulation of human brain responses by circadian rhythmicity and sleep debt” by Vincenzo Muto, Mathieu Jaspar, Christelle Meyer, Caroline Kussé, Sarah L. Chellappa, Christian Degueldre, Evelyne Balteau, Anahita Shaffii-Le Bourdiec, André Luxen, Benita Middleton, Simon N. Archer, Christophe Phillips, Fabienne Collette, Gilles Vandewalle, Derk-Jan Dijk, and Pierre Maquet in Science. Published online August 11 2016 doi:10.1126/science.aad2993

Cite This NeuroscienceNews.com Article

[cbtabs][cbtab title=”MLA”]University of Surrey. “Exposing the Brain’s Clock.” NeuroscienceNews. NeuroscienceNews, 11 August 2016.
<https://neurosciencenews.com/circadian-clock-sleep-loss-4836/>.[/cbtab][cbtab title=”APA”]University of Surrey. (2016, August 11). Exposing the Brain’s Clock. NeuroscienceNews. Retrieved August 11, 2016 from https://neurosciencenews.com/circadian-clock-sleep-loss-4836/[/cbtab][cbtab title=”Chicago”]University of Surrey. “Exposing the Brain’s Clock.” https://neurosciencenews.com/circadian-clock-sleep-loss-4836/ (accessed August 11, 2016).[/cbtab][/cbtabs]


Abstract

Local modulation of human brain responses by circadian rhythmicity and sleep debt

Human performance is modulated by circadian rhythmicity and homeostatic sleep pressure. Whether and how this interaction is represented at the regional brain level has not been established. We quantified changes in brain responses to a sustained-attention task during 13 functional magnetic resonance imaging sessions scheduled across the circadian cycle, during 42 hours of wakefulness and after recovery sleep, in 33 healthy participants. Cortical responses showed significant circadian rhythmicity, the phase of which varied across brain regions. Cortical responses also significantly decreased with accrued sleep debt. Subcortical areas exhibited primarily a circadian modulation that closely followed the melatonin profile. These findings expand our understanding of the mechanisms involved in maintaining cognition during the day and its deterioration during sleep deprivation and circadian misalignment.

“Local modulation of human brain responses by circadian rhythmicity and sleep debt” by Vincenzo Muto, Mathieu Jaspar, Christelle Meyer, Caroline Kussé, Sarah L. Chellappa, Christian Degueldre, Evelyne Balteau, Anahita Shaffii-Le Bourdiec, André Luxen, Benita Middleton, Simon N. Archer, Christophe Phillips, Fabienne Collette, Gilles Vandewalle, Derk-Jan Dijk, and Pierre Maquet in Science. Published online August 11 2016 doi:10.1126/science.aad2993

Feel free to share this Neuroscience News.
Join our Newsletter
I agree to have my personal information transferred to AWeber for Neuroscience Newsletter ( more information )
Sign up to receive our recent neuroscience headlines and summaries sent to your email once a day, totally free.
We hate spam and only use your email to contact you about newsletters. You can cancel your subscription any time.
  1. Interesting! I wake up the same time every night and morning. It is good to go to bed at the same time. Stress may destroy sleep. B vitamins the the day may help dreams be happy. Raising oxygen in my brain helps my sleep. The brain has 90 minute cycles. Even full moon may affect hormones/sleep. Hot/need a drink/need to urinate/dreams/worry/low thyroid at night/sugar swelling the brain/adrenals kicking in may affect sleep and more. More sunlight in the day may help sleep at night. Thanks!

Comments are closed.