Brain Metabolism Predicts Fluid Intelligence in Young Adults

A healthy brain is critical to a person’s cognitive abilities, but measuring brain health can be a complicated endeavor. A new study by University of Illinois researchers reports that healthy brain metabolism corresponds with fluid intelligence – a measure of one’s ability to solve unusual or complex problems – in young adults.

The results are reported in the journal Cerebral Cortex.

“Fluid intelligence is one of the most useful cognitive measures available,” said U. of I. Ph.D. candidate Aki Nikolaidis, who led the research with Ryan Larsen, a research scientist at the Beckman Institute for Advanced Science and Technology, and Beckman Institute director Arthur Kramer.

“This domain relates to an individual’s job satisfaction and salary level, among other real-world outcomes,” he said.

The researchers measured concentrations of the molecule N-acetyl aspartate, a known marker of metabolic activity in the brain, using magnetic resonance spectroscopy. Nikolaidis then looked at the relationship between NAA concentrations in different regions of the brain and fluid intelligence.

“MR spectroscopy allows us to go beyond simply imaging the structures of the brain. It allows us to image the capacity of the brain to produce energy,” Larsen said.

Previous research relating MR spectroscopy data to cognition has been inconsistent. One explanation may be that researchers fail to account for all relevant factors that relate to cognition, including brain size, in their analyses, Nikolaidis said. One goal of the current study was to address these previous contradictions.

“We wanted to do a more definitive study with a large sample size and with a higher quality methodological approach of acquiring the data,” Nikolaidis said. The researchers were able to create a more detailed map of NAA concentration in the brain than previous studies had, he said.

Image shows a girl reading a book.
The researchers concluded that fluid intelligence depends on brain metabolism and health. Image is for illustrative purposes only.

The team found that NAA concentration in an area of the brain linked to motor abilities in the frontal and parietal cortices was specifically linked to fluid intelligence but not to other closely related cognitive abilities. The brain’s motor regions have a role in planning and visualizing movements as well as carrying them out, Nikolaidis said. Mental visualization is a key element of fluid intelligence, he said.

The researchers concluded that fluid intelligence depends on brain metabolism and health. While overall brain size is genetically determined and not readily changed, NAA levels and brain metabolism may respond to health interventions including diet, exercise or cognitive training, Nikolaidis said.

About this neuroscience research

Funding: This research was funded by the Office of Naval Research; Abbott Nutrition through the Center for Nutrition, Learning, and Memory at the U. of I.; and the National Science Foundation.

Source: Sarah Banducci – University of Illinois at Urbana Champaign
Image Source: The image is in the public domain.
Original Research: Abstract for “Multivariate Associations of Fluid Intelligence and NAA” by Aki Nikolaidis, Pauline L. Baniqued, Michael B. Kranz, Claire J. Scavuzzo, Aron K. Barbey, Arthur F. Kramer, and Ryan J. Larsen in Cerebral Cortex. Published online March 22 2016 doi:10.1093/cercor/bhw070


Multivariate Associations of Fluid Intelligence and NAA

Understanding the neural and metabolic correlates of fluid intelligence not only aids scientists in characterizing cognitive processes involved in intelligence, but it also offers insight into intervention methods to improve fluid intelligence. Here we use magnetic resonance spectroscopic imaging (MRSI) to measure N-acetyl aspartate (NAA), a biochemical marker of neural energy production and efficiency. We use principal components analysis (PCA) to examine how the distribution of NAA in the frontal and parietal lobes relates to fluid intelligence. We find that a left lateralized frontal-parietal component predicts fluid intelligence, and it does so independently of brain size, another significant predictor of fluid intelligence. These results suggest that the left motor regions play a key role in the visualization and planning necessary for spatial cognition and reasoning, and we discuss these findings in the context of the Parieto-Frontal Integration Theory of intelligence.

“Multivariate Associations of Fluid Intelligence and NAA” by Aki Nikolaidis, Pauline L. Baniqued, Michael B. Kranz, Claire J. Scavuzzo, Aron K. Barbey, Arthur F. Kramer, and Ryan J. Larsen in Cerebral Cortex. Published online March 22 2016 doi:10.1093/cercor/bhw070

Feel free to share this Neuroscience News.
Join our Newsletter
I agree to have my personal information transferred to AWeber for Neuroscience Newsletter ( more information )
Sign up to receive our recent neuroscience headlines and summaries sent to your email once a day, totally free.
We hate spam and only use your email to contact you about newsletters. You can cancel your subscription any time.