New Clues to Toxic Forms of Amyloid Beta in Alzheimer’s

Summary: Researchers made a subtle alteration to the amyloid beta protein. The change affect its aggregation behavior and stabilizes an intermediate form with enhanced toxicity.

Source: UC Santa Cruz.

A subtle change to the amyloid beta protein affects its aggregation behavior and stabilizes an intermediate form with enhanced toxicity.

Much of the research on Alzheimer’s disease has focused on the amyloid beta protein, which clumps together into sticky fibrils that form deposits in the brains of people with the disease. In recent years, attention has turned away from the fibrils themselves to an intermediate stage in the aggregation of amyloid beta. “Oligomers” consisting of a few molecules of the protein stuck together are more mobile than the large, insoluble fibrils and seem to be much more toxic. But the actual structure of these soluble oligomers remains unknown, and it’s unclear how they trigger the neurotoxic effects that lead to Alzheimer’s disease.

A new study by researchers at UC Santa Cruz may help lift the veil on the structure and behavior of these neurotoxic oligomers. The researchers made a subtle alteration to the amyloid beta protein that had striking effects on its properties. By replacing one amino acid with its mirror image, they created a version of amyloid beta with a reduced rate of fibril formation, different fibril structure, and increased toxicity in cell culture compared to the normal or “wild type” protein.

“We perturbed the system very slightly and got enhanced cytotoxicity and destabilization of fibrils,” said Jevgenij Raskatov, assistant professor of chemistry and biochemistry at UC Santa Cruz and corresponding author of a paper on the findings to be published in Chemistry – A European Journal. The accepted article has been posted online prior to editing and formal publication of the final version of record.

Most amino acids can occur in two mirror-image forms, a “left-handed” or L-form and a “right-handed” or D-form, but living cells only make proteins out of L-amino acids. Raskatov’s team changed one amino acid in the amyloid beta protein to its D-form: the glutamate at position 22.

“This subtle change stabilizes a prefibrillary intermediate that has higher toxicity,” he said, noting that the stable intermediate could be a very useful tool for investigating the neurotoxic effects of amyloid beta oligomers. The role of the amyloid beta protein in Alzheimer’s disease is complicated and remains poorly understood. With a better understanding of the molecular mechanisms underlying the disease, researchers hope to identify new targets for drug development efforts.

Several mutations associated with inherited early-onset Alzheimer’s disease affect position 22 in the amyloid beta protein, either changing it from glutamate to another amino acid or deleting it. The new findings underscore the importance of the amino acid at position 22 for amyloid beta toxicity.

Image shows amyloid fibrils.
Fibrils formed by the aggregation of the amyloid beta protein can be seen in these transmission electron microscope images, which show differences in fibril morphology between the normal protein (above) and an altered protein with one amino acid replaced by its mirror image. The altered protein also forms fibrils more slowly and is more toxic to cells. NeuroscienceNews.com image is credited to Warner et al., CEJ 2016.

Raskatov’s team–postdoctoral researchers Christopher Warner (first author) and Subrata Dutta and graduate student Alejandro Foley–used a variety of techniques to investigate the properties of the altered amyloid beta protein and the oligomers and fibrils it forms. Using small-angle x-ray scattering analysis, they found evidence that the protein forms a soluble oligomer with an ordered structure.

“The scattering experiment provided an indication of structure, and there is a chance we can use this information to gain some structural insights,” Raskatov said. “We’re pretty excited about that, because if we can understand the structure of the neurotoxic oligomers, that could help efforts to design molecules to disrupt them.”

About this Alzheimer’s disease research article

Source: Tim Stephens – UC Santa Cruz
Image Source: This NeuroscienceNews.com image is credited to Warner et al., CEJ 2016.
Original Research: Abstract for “Introduction of D-glutamate at a critical residue of Aβ42 stabilizes a pre-fibrillary aggregate with enhanced toxicity” by Christopher Warner, Subrata Dutta, Alejandro R Foley and Jevgenij Raskatov in Chemistry – A European Journal. Published online June 7 2016 doi:10.1002/chem.201601763

Cite This NeuroscienceNews.com Article

[cbtabs][cbtab title=”MLA”]UC Santa Cruz. “Standard Blood Pressure Target is Suffiecient for Treating Some Strokes.” NeuroscienceNews. NeuroscienceNews, 10 June 2016.
<https://neurosciencenews.com/alzheimers-amyloid-toxicity-4433/>.[/cbtab][cbtab title=”APA”]UC Santa Cruz. (2016, June 10). Standard Blood Pressure Target is Suffiecient for Treating Some Strokes. NeuroscienceNews. Retrieved June 10, 2016 from https://neurosciencenews.com/alzheimers-amyloid-toxicity-4433/[/cbtab][cbtab title=”Chicago”]UC Santa Cruz. “Standard Blood Pressure Target is Suffiecient for Treating Some Strokes.” https://neurosciencenews.com/alzheimers-amyloid-toxicity-4433/ (accessed June 10, 2016).[/cbtab][/cbtabs]


Abstract

Introduction of D-glutamate at a critical residue of Aβ42 stabilizes a pre-fibrillary aggregate with enhanced toxicity

Aβ42 is an aggregation-prone peptide that plays a pivotal role Alzheimer’s Disease. We report that a subtle perturbation to the peptide through a single chirality change at Glutamate 22 leads to a pronounced delay in β-sheet adoption of the peptide. This was accompanied by an attenuated propensity of the peptide to form fibrils, which was correlated with changes at the level of fibrillary architecture. Strikingly, the incorporation of D-glutamate was found to stabilize a soluble, ordered macromolecular assembly with enhanced cytotoxicity to PC12 cells, highlighting the importance of advanced pre-fibrillary Aβ aggregates in neurotoxicity.

“Introduction of D-glutamate at a critical residue of Aβ42 stabilizes a pre-fibrillary aggregate with enhanced toxicity” by Christopher Warner, Subrata Dutta, Alejandro R Foley and Jevgenij Raskatov in Chemistry – A European Journal. Published online June 7 2016 doi:10.1002/chem.201601763

Feel free to share this Neuroscience News.
Join our Newsletter
I agree to have my personal information transferred to AWeber for Neuroscience Newsletter ( more information )
Sign up to receive our recent neuroscience headlines and summaries sent to your email once a day, totally free.
We hate spam and only use your email to contact you about newsletters. You can cancel your subscription any time.